Step * 1 1 1 2 1 1 of Lemma find-xover_wf


1. : ℕ
2. ∀d:ℕd
     ∀[x:ℤ]. ∀[n:{x...}]. ∀[step:ℕ+]. ∀[f:{x...} ⟶ 𝔹].
       find-xover(f;x;n;step) ∈ n':{n':ℤ(n ≤ n') ∧ n' tt}  × {x':ℤ
                                       ((n' n ∈ ℤ) ∧ (x' x ∈ ℤ))
                                       ∨ (((n ≤ x') ∧ x' ff) ∧ ((n' (n step) ∈ ℤ) ∨ ((n step) ≤ x')))}  
       supposing ∃m:{n..n d-}. ∀k:{m...}. tt
3. : ℤ
4. {x...}
5. step : ℕ+
6. {x...} ⟶ 𝔹
7. ¬↑(f n)
8. {n..n d-}
9. ∀k:{m...}. tt
10. ¬((n step) ≤ m)
11. 1 ∈ ℤ
⊢ step ∈ {n step..(n step) 0-}
BY
(InstHyp [⌜n⌝9⋅ THEN Auto) }


Latex:


Latex:

1.  d  :  \mBbbN{}
2.  \mforall{}d:\mBbbN{}d
          \mforall{}[x:\mBbbZ{}].  \mforall{}[n:\{x...\}].  \mforall{}[step:\mBbbN{}\msupplus{}].  \mforall{}[f:\{x...\}  {}\mrightarrow{}  \mBbbB{}].
              find-xover(f;x;n;step)  \mmember{}  n':\{n':\mBbbZ{}|  (n  \mleq{}  n')  \mwedge{}  f  n'  =  tt\}    \mtimes{}  \{x':\mBbbZ{}| 
                                                                              ((n'  =  n)  \mwedge{}  (x'  =  x))
                                                                              \mvee{}  (((n  \mleq{}  x')  \mwedge{}  f  x'  =  ff)
                                                                                  \mwedge{}  ((n'  =  (n  +  step))  \mvee{}  ((n  +  step)  \mleq{}  x')))\}   
              supposing  \mexists{}m:\{n..n  +  d\msupminus{}\}.  \mforall{}k:\{m...\}.  f  k  =  tt
3.  x  :  \mBbbZ{}
4.  n  :  \{x...\}
5.  step  :  \mBbbN{}\msupplus{}
6.  f  :  \{x...\}  {}\mrightarrow{}  \mBbbB{}
7.  \mneg{}\muparrow{}(f  n)
8.  m  :  \{n..n  +  d\msupminus{}\}
9.  \mforall{}k:\{m...\}.  f  k  =  tt
10.  \mneg{}((n  +  step)  \mleq{}  m)
11.  d  =  1
\mvdash{}  n  +  step  \mmember{}  \{n  +  step..(n  +  step)  +  0\msupminus{}\}


By


Latex:
(InstHyp  [\mkleeneopen{}n\mkleeneclose{}]  9\mcdot{}  THEN  Auto)




Home Index