Nuprl Lemma : find-xover_wf

[x:ℤ]. ∀[n:{x...}]. ∀[step:ℕ+]. ∀[f:{x...} ⟶ 𝔹].
  find-xover(f;x;n;step) ∈ n':{n':ℤ(n ≤ n') ∧ n' tt}  × {x':ℤ
                                  ((n' n ∈ ℤ) ∧ (x' x ∈ ℤ))
                                  ∨ (((n ≤ x') ∧ x' ff) ∧ ((n' (n step) ∈ ℤ) ∨ ((n step) ≤ x')))}  
  supposing ∃m:{n...}. ∀k:{m...}. tt


Proof




Definitions occuring in Statement :  find-xover: find-xover(f;m;n;step) int_upper: {i...} nat_plus: + bfalse: ff btrue: tt bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B all: x:A. B[x] exists: x:A. B[x] or: P ∨ Q and: P ∧ Q member: t ∈ T set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] product: x:A × B[x] add: m int: equal: t ∈ T
Definitions unfolded in proof :  exists: x:A. B[x] all: x:A. B[x] member: t ∈ T nat: uall: [x:A]. B[x] int_upper: {i...} guard: {T} nat_plus: + decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) false: False implies:  Q not: ¬A top: Top and: P ∧ Q prop: int_seg: {i..j-} lelt: i ≤ j < k so_lambda: λ2x.t[x] subtype_rel: A ⊆B so_apply: x[s] ge: i ≥  le: A ≤ B less_than': less_than'(a;b) less_than: a < b find-xover: find-xover(f;m;n;step) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  cand: c∧ B assert: b iff: ⇐⇒ Q true: True rev_implies:  Q sq_stable: SqStable(P) squash: T bfalse: ff sq_type: SQType(T) bnot: ¬bb has-value: (a)↓ subtract: m
Lemmas referenced :  subtract_wf int_upper_properties nat_plus_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermSubtract_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_wf le_wf decidable__lt intformless_wf int_formula_prop_less_lemma lelt_wf all_wf int_upper_wf equal-wf-T-base int_upper_subtype_int_upper int_seg_properties exists_wf bool_wf nat_plus_wf nat_properties ge_wf less_than_wf int_seg_wf less_than_transitivity1 less_than_irreflexivity decidable__equal_int int_seg_subtype false_wf intformeq_wf int_formula_prop_eq_lemma nat_wf eqtt_to_assert iff_imp_equal_bool btrue_wf assert_wf true_wf or_wf equal_wf member_wf equal-wf-base sq_stable__and sq_stable__le sq_stable__equal squash_wf equal-wf-base-T int_subtype_base eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot value-type-has-value mul_nat_plus subtype_rel_dep_function subtype_rel_self iff_weakening_equal not_assert_elim btrue_neq_bfalse bfalse_wf assert_elim
Rules used in proof :  cut sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity productElimination thin hypothesis dependent_functionElimination dependent_set_memberEquality addEquality introduction extract_by_obid isectElimination setElimination rename because_Cache natural_numberEquality hypothesisEquality unionElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll applyEquality applyLambdaEquality baseClosed equalityTransitivity equalitySymmetry functionEquality isect_memberFormation axiomEquality lambdaFormation intWeakElimination independent_functionElimination hypothesis_subsumption functionExtensionality equalityElimination dependent_pairEquality productEquality inlFormation imageMemberEquality imageElimination setEquality promote_hyp instantiate cumulativity callbyvalueReduce universeEquality multiplyEquality inrFormation addLevel levelHypothesis

Latex:
\mforall{}[x:\mBbbZ{}].  \mforall{}[n:\{x...\}].  \mforall{}[step:\mBbbN{}\msupplus{}].  \mforall{}[f:\{x...\}  {}\mrightarrow{}  \mBbbB{}].
    find-xover(f;x;n;step)  \mmember{}  n':\{n':\mBbbZ{}|  (n  \mleq{}  n')  \mwedge{}  f  n'  =  tt\}    \mtimes{}  \{x':\mBbbZ{}| 
                                                                    ((n'  =  n)  \mwedge{}  (x'  =  x))
                                                                    \mvee{}  (((n  \mleq{}  x')  \mwedge{}  f  x'  =  ff)
                                                                        \mwedge{}  ((n'  =  (n  +  step))  \mvee{}  ((n  +  step)  \mleq{}  x')))\}   
    supposing  \mexists{}m:\{n...\}.  \mforall{}k:\{m...\}.  f  k  =  tt



Date html generated: 2017_04_14-AM-09_17_49
Last ObjectModification: 2017_02_27-PM-03_55_27

Theory : int_2


Home Index