Step
*
2
2
1
1
of Lemma
fun_exp-mul
1. T : Type
2. f : T ⟶ T
3. n : ℤ
4. 0 < n
5. ∀[m:ℕ]. ∀[x:T]. ((f^(n - 1) * m x) = (λx.(f^m x)^n - 1 x) ∈ T)
6. m : ℕ
7. x : T
⊢ (f^m (λx.(f^m x)^n - 1 x)) = (λx.(f^m x)^n x) ∈ T
BY
{ ((RW (AddrC [3;1] funexpTopC) 0 THENA Auto) THEN (SplitOnConclITE THEN Auto) THEN Reduce 0) }
Latex:
Latex:
1. T : Type
2. f : T {}\mrightarrow{} T
3. n : \mBbbZ{}
4. 0 < n
5. \mforall{}[m:\mBbbN{}]. \mforall{}[x:T]. ((f\^{}(n - 1) * m x) = (\mlambda{}x.(f\^{}m x)\^{}n - 1 x))
6. m : \mBbbN{}
7. x : T
\mvdash{} (f\^{}m (\mlambda{}x.(f\^{}m x)\^{}n - 1 x)) = (\mlambda{}x.(f\^{}m x)\^{}n x)
By
Latex:
((RW (AddrC [3;1] funexpTopC) 0 THENA Auto) THEN (SplitOnConclITE THEN Auto) THEN Reduce 0)
Home
Index