Nuprl Lemma : fun_exp-mul
∀[T:Type]. ∀[f:T ⟶ T]. ∀[n,m:ℕ]. ∀[x:T].  ((f^n * m x) = (λx.(f^m x)^n x) ∈ T)
Proof
Definitions occuring in Statement : 
fun_exp: f^n
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
apply: f a
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
multiply: n * m
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
all: ∀x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
squash: ↓T
, 
true: True
, 
subtype_rel: A ⊆r B
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
fun_exp: f^n
, 
primrec: primrec(n;b;c)
, 
compose: f o g
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
Lemmas referenced : 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
fun_exp0_lemma, 
decidable__le, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
nat_wf, 
zero-mul, 
subtype_base_sq, 
int_subtype_base, 
decidable__equal_int, 
intformeq_wf, 
itermMultiply_wf, 
itermAdd_wf, 
int_formula_prop_eq_lemma, 
int_term_value_mul_lemma, 
int_term_value_add_lemma, 
fun_exp_add-sq, 
mul_bounds_1a, 
le_wf, 
equal_wf, 
squash_wf, 
true_wf, 
fun_exp_wf, 
iff_weakening_equal, 
fun_exp_unroll, 
eq_int_wf, 
bool_wf, 
equal-wf-base, 
assert_wf, 
bnot_wf, 
not_wf, 
compose_wf, 
uiff_transitivity, 
eqtt_to_assert, 
assert_of_eq_int, 
iff_transitivity, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
lambdaFormation, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
computeAll, 
independent_functionElimination, 
axiomEquality, 
because_Cache, 
unionElimination, 
functionEquality, 
cumulativity, 
universeEquality, 
instantiate, 
equalityTransitivity, 
equalitySymmetry, 
dependent_set_memberEquality, 
multiplyEquality, 
applyEquality, 
imageElimination, 
functionExtensionality, 
imageMemberEquality, 
baseClosed, 
productElimination, 
baseApply, 
closedConclusion, 
equalityElimination, 
impliesFunctionality
Latex:
\mforall{}[T:Type].  \mforall{}[f:T  {}\mrightarrow{}  T].  \mforall{}[n,m:\mBbbN{}].  \mforall{}[x:T].    ((f\^{}n  *  m  x)  =  (\mlambda{}x.(f\^{}m  x)\^{}n  x))
Date html generated:
2017_04_14-AM-09_13_12
Last ObjectModification:
2017_02_27-PM-03_50_17
Theory : int_2
Home
Index