Nuprl Lemma : fun_exp-mul

[T:Type]. ∀[f:T ⟶ T]. ∀[n,m:ℕ]. ∀[x:T].  ((f^n x) x.(f^m x)^n x) ∈ T)


Proof




Definitions occuring in Statement :  fun_exp: f^n nat: uall: [x:A]. B[x] apply: a lambda: λx.A[x] function: x:A ⟶ B[x] multiply: m universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A all: x:A. B[x] top: Top and: P ∧ Q prop: decidable: Dec(P) or: P ∨ Q sq_type: SQType(T) guard: {T} squash: T true: True subtype_rel: A ⊆B iff: ⇐⇒ Q rev_implies:  Q fun_exp: f^n primrec: primrec(n;b;c) compose: g bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf fun_exp0_lemma decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma nat_wf zero-mul subtype_base_sq int_subtype_base decidable__equal_int intformeq_wf itermMultiply_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_mul_lemma int_term_value_add_lemma fun_exp_add-sq mul_bounds_1a le_wf equal_wf squash_wf true_wf fun_exp_wf iff_weakening_equal fun_exp_unroll eq_int_wf bool_wf equal-wf-base assert_wf bnot_wf not_wf compose_wf uiff_transitivity eqtt_to_assert assert_of_eq_int iff_transitivity iff_weakening_uiff eqff_to_assert assert_of_bnot
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination axiomEquality because_Cache unionElimination functionEquality cumulativity universeEquality instantiate equalityTransitivity equalitySymmetry dependent_set_memberEquality multiplyEquality applyEquality imageElimination functionExtensionality imageMemberEquality baseClosed productElimination baseApply closedConclusion equalityElimination impliesFunctionality

Latex:
\mforall{}[T:Type].  \mforall{}[f:T  {}\mrightarrow{}  T].  \mforall{}[n,m:\mBbbN{}].  \mforall{}[x:T].    ((f\^{}n  *  m  x)  =  (\mlambda{}x.(f\^{}m  x)\^{}n  x))



Date html generated: 2017_04_14-AM-09_13_12
Last ObjectModification: 2017_02_27-PM-03_50_17

Theory : int_2


Home Index