Nuprl Lemma : fun_exp_add-sq

[n,m:ℕ]. ∀[f,x:Top].  (f^n f^n (f^m x))


Proof




Definitions occuring in Statement :  fun_exp: f^n nat: uall: [x:A]. B[x] top: Top apply: a add: m sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  guard: {T} uimplies: supposing a prop: all: x:A. B[x] top: Top decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q and: P ∧ Q not: ¬A rev_implies:  Q uiff: uiff(P;Q) subtract: m subtype_rel: A ⊆B le: A ≤ B less_than': less_than'(a;b) true: True
Lemmas referenced :  nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf top_wf nat_wf fun_exp0_lemma zero-add decidable__le subtract_wf false_wf not-ge-2 less-iff-le condition-implies-le minus-one-mul minus-one-mul-top minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel fun_exp_add_sq le_weakening2 le_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination independent_functionElimination voidElimination sqequalRule lambdaEquality dependent_functionElimination isect_memberEquality sqequalAxiom voidEquality because_Cache unionElimination independent_pairFormation productElimination addEquality applyEquality intEquality minusEquality dependent_set_memberEquality

Latex:
\mforall{}[n,m:\mBbbN{}].  \mforall{}[f,x:Top].    (f\^{}n  +  m  x  \msim{}  f\^{}n  (f\^{}m  x))



Date html generated: 2016_05_13-PM-04_07_04
Last ObjectModification: 2015_12_26-AM-11_04_17

Theory : fun_1


Home Index