Step
*
2
1
2
2
of Lemma
int-prod-split
1. n : ℤ
2. 0 < n
3. ∀[f:ℕn - 1 ⟶ ℤ]. ∀[m:ℕ(n - 1) + 1]. (Π(f[x] | x < n - 1) = (Π(f[x] | x < m) * Π(f[x + m] | x < n - 1 - m)) ∈ ℤ)
4. f : ℕn ⟶ ℤ
5. m : ℕn + 1
6. ¬(m = (n - 1) ∈ ℤ)
7. ¬(m = n ∈ ℤ)
⊢ (Π(f[x] | x < n - 1) * f[n - 1])
= (Π(f[x] | x < m) * if n - m <z 1 then 1 else Π(f[x + m] | x < n - m - 1) * f[(n - m - 1) + m] fi )
∈ ℤ
BY
{ AutoSplit }
1
1. n : ℤ
2. 0 < n
3. ∀[f:ℕn - 1 ⟶ ℤ]. ∀[m:ℕ(n - 1) + 1]. (Π(f[x] | x < n - 1) = (Π(f[x] | x < m) * Π(f[x + m] | x < n - 1 - m)) ∈ ℤ)
4. f : ℕn ⟶ ℤ
5. m : ℕn + 1
6. ¬n - m < 1
7. ¬(m = (n - 1) ∈ ℤ)
8. ¬(m = n ∈ ℤ)
⊢ (Π(f[x] | x < n - 1) * f[n - 1]) = (Π(f[x] | x < m) * Π(f[x + m] | x < n - m - 1) * f[(n - m - 1) + m]) ∈ ℤ
Latex:
Latex:
1. n : \mBbbZ{}
2. 0 < n
3. \mforall{}[f:\mBbbN{}n - 1 {}\mrightarrow{} \mBbbZ{}]. \mforall{}[m:\mBbbN{}(n - 1) + 1].
(\mPi{}(f[x] | x < n - 1) = (\mPi{}(f[x] | x < m) * \mPi{}(f[x + m] | x < n - 1 - m)))
4. f : \mBbbN{}n {}\mrightarrow{} \mBbbZ{}
5. m : \mBbbN{}n + 1
6. \mneg{}(m = (n - 1))
7. \mneg{}(m = n)
\mvdash{} (\mPi{}(f[x] | x < n - 1) * f[n - 1])
= (\mPi{}(f[x] | x < m) * if n - m <z 1 then 1 else \mPi{}(f[x + m] | x < n - m - 1) * f[(n - m - 1) + m] fi )
By
Latex:
AutoSplit
Home
Index