Step
*
of Lemma
isolate_summand2
No Annotations
∀m:ℕ. ∀[n:ℕ]. ∀[f:ℕn ⟶ ℤ]. Σ(f[x] | x < n) = (f[m] + Σ(if (x =z m) then 0 else f[x] fi | x < n)) ∈ ℤ supposing m < n
BY
{ Auto }
Latex:
Latex:
No Annotations
\mforall{}m:\mBbbN{}
\mforall{}[n:\mBbbN{}]. \mforall{}[f:\mBbbN{}n {}\mrightarrow{} \mBbbZ{}].
\mSigma{}(f[x] | x < n) = (f[m] + \mSigma{}(if (x =\msubz{} m) then 0 else f[x] fi | x < n)) supposing m < n
By
Latex:
Auto
Home
Index