Nuprl Lemma : isolate_summand2

m:ℕ. ∀[n:ℕ]. ∀[f:ℕn ⟶ ℤ].  Σ(f[x] x < n) (f[m] + Σ(if (x =z m) then else f[x] fi  x < n)) ∈ ℤ supposing m < n


Proof




Definitions occuring in Statement :  sum: Σ(f[x] x < k) int_seg: {i..j-} nat: ifthenelse: if then else fi  eq_int: (i =z j) less_than: a < b uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] function: x:A ⟶ B[x] add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] nat: int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q ge: i ≥  decidable: Dec(P) or: P ∨ Q not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop:
Lemmas referenced :  isolate_summand int_seg_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf istype-le istype-less_than istype-nat
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule lambdaEquality_alt applyEquality universeIsType natural_numberEquality setElimination rename hypothesis dependent_set_memberEquality_alt independent_pairFormation dependent_functionElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt voidElimination productIsType because_Cache axiomEquality isectIsTypeImplies inhabitedIsType functionIsType

Latex:
\mforall{}m:\mBbbN{}
    \mforall{}[n:\mBbbN{}].  \mforall{}[f:\mBbbN{}n  {}\mrightarrow{}  \mBbbZ{}].
        \mSigma{}(f[x]  |  x  <  n)  =  (f[m]  +  \mSigma{}(if  (x  =\msubz{}  m)  then  0  else  f[x]  fi    |  x  <  n))  supposing  m  <  n



Date html generated: 2020_05_19-PM-09_41_32
Last ObjectModification: 2019_10_17-PM-03_19_19

Theory : int_2


Home Index