Nuprl Lemma : isolate_summand

[n:ℕ]. ∀[f:ℕn ⟶ ℤ]. ∀[m:ℕn].  (f[x] x < n) (f[m] + Σ(if (x =z m) then else f[x] fi  x < n)) ∈ ℤ)


Proof




Definitions occuring in Statement :  sum: Σ(f[x] x < k) int_seg: {i..j-} nat: ifthenelse: if then else fi  eq_int: (i =z j) uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] all: x:A. B[x] top: Top and: P ∧ Q prop: guard: {T} int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q subtype_rel: A ⊆B le: A ≤ B less_than': less_than'(a;b) iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) subtract: m true: True sq_type: SQType(T) bool: 𝔹 unit: Unit it: btrue: tt less_than: a < b squash: T bfalse: ff bnot: ¬bb ifthenelse: if then else fi  assert: b nequal: a ≠ b ∈  so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf int_seg_wf int_seg_properties decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma subtype_rel_function int_seg_subtype false_wf not-le-2 condition-implies-le add-associates minus-add minus-one-mul add-swap minus-one-mul-top add-mul-special zero-mul add-zero add-commutes le-add-cancel2 subtype_rel_self nat_wf decidable__equal_int subtype_base_sq int_subtype_base lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int top_wf eq_int_wf assert_of_eq_int eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_int intformeq_wf int_formula_prop_eq_lemma not_functionality_wrt_uiff assert_wf sum-unroll decidable__lt lelt_wf itermAdd_wf int_term_value_add_lemma sum_functionality le_wf add-is-int-iff
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation axiomEquality functionEquality because_Cache productElimination Error :universeIsType,  Error :functionIsType,  Error :inhabitedIsType,  unionElimination applyEquality addEquality minusEquality multiplyEquality instantiate cumulativity equalityTransitivity equalitySymmetry equalityElimination lessCases axiomSqEquality imageMemberEquality baseClosed imageElimination promote_hyp dependent_set_memberEquality functionExtensionality pointwiseFunctionality baseApply closedConclusion

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[f:\mBbbN{}n  {}\mrightarrow{}  \mBbbZ{}].  \mforall{}[m:\mBbbN{}n].
    (\mSigma{}(f[x]  |  x  <  n)  =  (f[m]  +  \mSigma{}(if  (x  =\msubz{}  m)  then  0  else  f[x]  fi    |  x  <  n)))



Date html generated: 2019_06_20-PM-01_18_23
Last ObjectModification: 2018_09_26-PM-02_40_38

Theory : int_2


Home Index