Nuprl Lemma : sum-unroll
∀[n,f:Top].  (Σ(f[x] | x < n) ~ if (0) < (n)  then Σ(f[x] | x < n - 1) + f[n - 1]  else 0)
Proof
Definitions occuring in Statement : 
sum: Σ(f[x] | x < k)
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
so_apply: x[s]
, 
less: if (a) < (b)  then c  else d
, 
subtract: n - m
, 
add: n + m
, 
natural_number: $n
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
less_than: a < b
, 
less_than': less_than'(a;b)
, 
top: Top
, 
true: True
, 
squash: ↓T
, 
not: ¬A
, 
false: False
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
ifthenelse: if b then t else f fi 
, 
assert: ↑b
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
prop: ℙ
, 
nat: ℕ
, 
decidable: Dec(P)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
ge: i ≥ j 
, 
sum: Σ(f[x] | x < k)
, 
sum_aux: sum_aux(k;v;i;x.f[x])
, 
has-value: (a)↓
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
Lemmas referenced : 
top_wf, 
lt_int_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
istype-void, 
eqff_to_assert, 
bool_subtype_base, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
less_than_wf, 
decidable__le, 
subtract_wf, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermSubtract_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_subtract_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
le_wf, 
int_subtype_base, 
nat_properties, 
decidable__equal_int, 
intformeq_wf, 
itermAdd_wf, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
ge_wf, 
subtract-1-ge-0, 
decidable__lt, 
value-type-has-value, 
int-value-type, 
less_than_anti-reflexive, 
add-zero, 
add-commutes, 
exception-not-value, 
has-value_wf_base, 
is-exception_wf, 
subtract-add-cancel, 
base_wf, 
subtype_rel_self, 
zero-add, 
sum-has-value, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
thin, 
sqequalHypSubstitution, 
hypothesis, 
axiomSqEquality, 
Error :inhabitedIsType, 
hypothesisEquality, 
Error :isect_memberEquality_alt, 
isectElimination, 
Error :isectIsTypeImplies, 
Error :universeIsType, 
extract_by_obid, 
Error :lambdaFormation_alt, 
natural_numberEquality, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
independent_isectElimination, 
lessCases, 
independent_pairFormation, 
voidElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
independent_functionElimination, 
Error :dependent_pairFormation_alt, 
Error :equalityIsType4, 
baseApply, 
closedConclusion, 
applyEquality, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
cumulativity, 
because_Cache, 
Error :equalityIsType1, 
intEquality, 
Error :dependent_set_memberEquality_alt, 
approximateComputation, 
Error :lambdaEquality_alt, 
int_eqEquality, 
applyLambdaEquality, 
setElimination, 
rename, 
intWeakElimination, 
Error :functionIsTypeImplies, 
addEquality, 
callbyvalueReduce, 
sqequalSqle, 
divergentSqle, 
callbyvalueCallbyvalue, 
sqleReflexivity, 
callbyvalueExceptionCases, 
axiomSqleEquality, 
addExceptionCases, 
exceptionSqequal, 
callbyvalueAdd, 
lessExceptionCases, 
dependent_pairFormation, 
voidEquality, 
isect_memberEquality, 
isect_memberFormation, 
lambdaFormation, 
callbyvalueLess
Latex:
\mforall{}[n,f:Top].    (\mSigma{}(f[x]  |  x  <  n)  \msim{}  if  (0)  <  (n)    then  \mSigma{}(f[x]  |  x  <  n  -  1)  +  f[n  -  1]    else  0)
Date html generated:
2019_06_20-PM-01_18_01
Last ObjectModification:
2018_10_15-PM-01_51_02
Theory : int_2
Home
Index