Nuprl Lemma : sum-unroll

[n,f:Top].  (f[x] x < n) if (0) < (n)  then Σ(f[x] x < 1) f[n 1]  else 0)


Proof




Definitions occuring in Statement :  sum: Σ(f[x] x < k) uall: [x:A]. B[x] top: Top so_apply: x[s] less: if (a) < (b)  then c  else d subtract: m add: m natural_number: $n sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q all: x:A. B[x] bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a less_than: a < b less_than': less_than'(a;b) top: Top true: True squash: T not: ¬A false: False bfalse: ff exists: x:A. B[x] subtype_rel: A ⊆B or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb ifthenelse: if then else fi  assert: b rev_implies:  Q iff: ⇐⇒ Q prop: nat: decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) ge: i ≥  sum: Σ(f[x] x < k) sum_aux: sum_aux(k;v;i;x.f[x]) has-value: (a)↓ so_apply: x[s] so_lambda: λ2x.t[x]
Lemmas referenced :  top_wf lt_int_wf eqtt_to_assert assert_of_lt_int istype-void eqff_to_assert bool_subtype_base bool_cases_sqequal subtype_base_sq bool_wf assert-bnot iff_weakening_uiff assert_wf less_than_wf decidable__le subtract_wf full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf le_wf int_subtype_base nat_properties decidable__equal_int intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma ge_wf subtract-1-ge-0 decidable__lt value-type-has-value int-value-type less_than_anti-reflexive add-zero add-commutes exception-not-value has-value_wf_base is-exception_wf subtract-add-cancel base_wf subtype_rel_self zero-add sum-has-value equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule thin sqequalHypSubstitution hypothesis axiomSqEquality Error :inhabitedIsType,  hypothesisEquality Error :isect_memberEquality_alt,  isectElimination Error :isectIsTypeImplies,  Error :universeIsType,  extract_by_obid Error :lambdaFormation_alt,  natural_numberEquality unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination lessCases independent_pairFormation voidElimination imageMemberEquality baseClosed imageElimination independent_functionElimination Error :dependent_pairFormation_alt,  Error :equalityIsType4,  baseApply closedConclusion applyEquality promote_hyp dependent_functionElimination instantiate cumulativity because_Cache Error :equalityIsType1,  intEquality Error :dependent_set_memberEquality_alt,  approximateComputation Error :lambdaEquality_alt,  int_eqEquality applyLambdaEquality setElimination rename intWeakElimination Error :functionIsTypeImplies,  addEquality callbyvalueReduce sqequalSqle divergentSqle callbyvalueCallbyvalue sqleReflexivity callbyvalueExceptionCases axiomSqleEquality addExceptionCases exceptionSqequal callbyvalueAdd lessExceptionCases dependent_pairFormation voidEquality isect_memberEquality isect_memberFormation lambdaFormation callbyvalueLess

Latex:
\mforall{}[n,f:Top].    (\mSigma{}(f[x]  |  x  <  n)  \msim{}  if  (0)  <  (n)    then  \mSigma{}(f[x]  |  x  <  n  -  1)  +  f[n  -  1]    else  0)



Date html generated: 2019_06_20-PM-01_18_01
Last ObjectModification: 2018_10_15-PM-01_51_02

Theory : int_2


Home Index