Nuprl Lemma : sum-has-value
∀[n,f:Base].  {(n ∈ ℤ) ∧ (f ∈ ℕn ⟶ ℤ)} supposing (Σ(f[x] | x < n))↓
Proof
Definitions occuring in Statement : 
sum: Σ(f[x] | x < k), 
int_seg: {i..j-}, 
has-value: (a)↓, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
guard: {T}, 
so_apply: x[s], 
and: P ∧ Q, 
member: t ∈ T, 
function: x:A ⟶ B[x], 
natural_number: $n, 
int: ℤ, 
base: Base
Definitions unfolded in proof : 
prop: ℙ, 
cand: A c∧ B, 
and: P ∧ Q, 
uimplies: b supposing a, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
guard: {T}, 
has-value: (a)↓, 
sum_aux: sum_aux(k;v;i;x.f[x]), 
sum: Σ(f[x] | x < k), 
or: P ∨ Q, 
decidable: Dec(P), 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
subtype_rel: A ⊆r B, 
top: Top, 
not: ¬A, 
exists: ∃x:A. B[x], 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
ge: i ≥ j , 
false: False, 
implies: P ⇒ Q, 
nat: ℕ, 
all: ∀x:A. B[x], 
lelt: i ≤ j < k, 
int_seg: {i..j-}, 
less_than: a < b, 
less_than': less_than'(a;b), 
true: True, 
squash: ↓T, 
sq_type: SQType(T), 
le: A ≤ B
Lemmas referenced : 
istype-top, 
istype-void, 
int_subtype_base, 
value-type-has-value, 
int-value-type, 
int_seg_properties, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
istype-le, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
decidable__equal_int, 
subtype_base_sq, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
istype-less_than, 
false_wf, 
void_wf, 
int_seg_wf, 
satisfiable-full-omega-tt, 
ge_wf, 
less_than_wf, 
less_than_transitivity1, 
less_than_irreflexivity, 
le_wf, 
set_subtype_base, 
nat_wf, 
has-value_wf_base, 
base_wf
Rules used in proof : 
because_Cache, 
isect_memberEquality, 
hypothesisEquality, 
baseClosed, 
closedConclusion, 
baseApply, 
isectElimination, 
lemma_by_obid, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
independent_pairEquality, 
thin, 
productElimination, 
sqequalHypSubstitution, 
hypothesis, 
independent_pairFormation, 
cut, 
introduction, 
isect_memberFormation, 
computationStep, 
sqequalTransitivity, 
sqequalReflexivity, 
sqequalRule, 
sqequalSubstitution, 
callbyvalueLess, 
unionElimination, 
applyEquality, 
independent_functionElimination, 
computeAll, 
voidEquality, 
voidElimination, 
dependent_functionElimination, 
intEquality, 
int_eqEquality, 
lambdaEquality, 
dependent_pairFormation, 
independent_isectElimination, 
natural_numberEquality, 
intWeakElimination, 
rename, 
setElimination, 
lambdaFormation, 
instantiate, 
functionExtensionality, 
lessCases, 
Error :isect_memberFormation_alt, 
axiomSqEquality, 
Error :inhabitedIsType, 
Error :isect_memberEquality_alt, 
Error :isectIsTypeImplies, 
extract_by_obid, 
imageMemberEquality, 
Error :lambdaFormation_alt, 
imageElimination, 
callbyvalueCallbyvalue, 
callbyvalueReduce, 
callbyvalueAdd, 
Error :dependent_set_memberEquality_alt, 
addEquality, 
approximateComputation, 
Error :dependent_pairFormation_alt, 
Error :lambdaEquality_alt, 
Error :universeIsType, 
cumulativity, 
Error :productIsType, 
dependent_set_memberEquality
Latex:
\mforall{}[n,f:Base].    \{(n  \mmember{}  \mBbbZ{})  \mwedge{}  (f  \mmember{}  \mBbbN{}n  {}\mrightarrow{}  \mBbbZ{})\}  supposing  (\mSigma{}(f[x]  |  x  <  n))\mdownarrow{}
Date html generated:
2019_06_20-PM-01_17_53
Last ObjectModification:
2019_03_28-PM-00_07_18
Theory : int_2
Home
Index