Nuprl Lemma : sum-has-value

[n,f:Base].  {(n ∈ ℤ) ∧ (f ∈ ℕn ⟶ ℤ)} supposing (f[x] x < n))↓


Proof




Definitions occuring in Statement :  sum: Σ(f[x] x < k) int_seg: {i..j-} has-value: (a)↓ uimplies: supposing a uall: [x:A]. B[x] guard: {T} so_apply: x[s] and: P ∧ Q member: t ∈ T function: x:A ⟶ B[x] natural_number: $n int: base: Base
Definitions unfolded in proof :  prop: cand: c∧ B and: P ∧ Q uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] guard: {T} has-value: (a)↓ sum_aux: sum_aux(k;v;i;x.f[x]) sum: Σ(f[x] x < k) or: P ∨ Q decidable: Dec(P) so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B top: Top not: ¬A exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) ge: i ≥  false: False implies:  Q nat: all: x:A. B[x] lelt: i ≤ j < k int_seg: {i..j-} less_than: a < b less_than': less_than'(a;b) true: True squash: T sq_type: SQType(T) le: A ≤ B
Lemmas referenced :  istype-top istype-void int_subtype_base value-type-has-value int-value-type int_seg_properties nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf istype-le subtract_wf itermSubtract_wf int_term_value_subtract_lemma decidable__equal_int subtype_base_sq intformeq_wf int_formula_prop_eq_lemma decidable__lt intformless_wf int_formula_prop_less_lemma istype-less_than false_wf void_wf int_seg_wf satisfiable-full-omega-tt ge_wf less_than_wf less_than_transitivity1 less_than_irreflexivity le_wf set_subtype_base nat_wf has-value_wf_base base_wf
Rules used in proof :  because_Cache isect_memberEquality hypothesisEquality baseClosed closedConclusion baseApply isectElimination lemma_by_obid equalitySymmetry equalityTransitivity axiomEquality independent_pairEquality thin productElimination sqequalHypSubstitution hypothesis independent_pairFormation cut introduction isect_memberFormation computationStep sqequalTransitivity sqequalReflexivity sqequalRule sqequalSubstitution callbyvalueLess unionElimination applyEquality independent_functionElimination computeAll voidEquality voidElimination dependent_functionElimination intEquality int_eqEquality lambdaEquality dependent_pairFormation independent_isectElimination natural_numberEquality intWeakElimination rename setElimination lambdaFormation instantiate functionExtensionality lessCases Error :isect_memberFormation_alt,  axiomSqEquality Error :inhabitedIsType,  Error :isect_memberEquality_alt,  Error :isectIsTypeImplies,  extract_by_obid imageMemberEquality Error :lambdaFormation_alt,  imageElimination callbyvalueCallbyvalue callbyvalueReduce callbyvalueAdd Error :dependent_set_memberEquality_alt,  addEquality approximateComputation Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  Error :universeIsType,  cumulativity Error :productIsType,  dependent_set_memberEquality

Latex:
\mforall{}[n,f:Base].    \{(n  \mmember{}  \mBbbZ{})  \mwedge{}  (f  \mmember{}  \mBbbN{}n  {}\mrightarrow{}  \mBbbZ{})\}  supposing  (\mSigma{}(f[x]  |  x  <  n))\mdownarrow{}



Date html generated: 2019_06_20-PM-01_17_53
Last ObjectModification: 2019_03_28-PM-00_07_18

Theory : int_2


Home Index