Step * 1 2 of Lemma isolate_summand


1. : ℤ
2. 0 < n
3. ∀[f:ℕ1 ⟶ ℤ]. ∀[m:ℕ1].  (f[x] x < 1) (f[m] + Σ(if (x =z m) then else f[x] fi  x < 1)) ∈ ℤ)
4. : ℕn ⟶ ℤ
5. ∀[m:ℕ1]. (f[x] x < 1) (f[m] + Σ(if (x =z m) then else f[x] fi  x < 1)) ∈ ℤ)
6. : ℕn
7. ¬(m (n 1) ∈ ℤ)
⊢ Σ(f[x] x < n) (f[m] + Σ(if (x =z m) then else f[x] fi  x < n)) ∈ ℤ
BY
((InstHyp [m] (-3) THENA Auto) THEN (RWO "sum-unroll" THENA Auto) THEN RepeatFor (AutoSplit)) }


Latex:


Latex:

1.  n  :  \mBbbZ{}
2.  0  <  n
3.  \mforall{}[f:\mBbbN{}n  -  1  {}\mrightarrow{}  \mBbbZ{}].  \mforall{}[m:\mBbbN{}n  -  1].
          (\mSigma{}(f[x]  |  x  <  n  -  1)  =  (f[m]  +  \mSigma{}(if  (x  =\msubz{}  m)  then  0  else  f[x]  fi    |  x  <  n  -  1)))
4.  f  :  \mBbbN{}n  {}\mrightarrow{}  \mBbbZ{}
5.  \mforall{}[m:\mBbbN{}n  -  1].  (\mSigma{}(f[x]  |  x  <  n  -  1)  =  (f[m]  +  \mSigma{}(if  (x  =\msubz{}  m)  then  0  else  f[x]  fi    |  x  <  n  -  1)))
6.  m  :  \mBbbN{}n
7.  \mneg{}(m  =  (n  -  1))
\mvdash{}  \mSigma{}(f[x]  |  x  <  n)  =  (f[m]  +  \mSigma{}(if  (x  =\msubz{}  m)  then  0  else  f[x]  fi    |  x  <  n))


By


Latex:
((InstHyp  [m]  (-3)  THENA  Auto)  THEN  (RWO  "sum-unroll"  0  THENA  Auto)  THEN  RepeatFor  2  (AutoSplit))




Home Index