Step
*
1
of Lemma
mu-bound-unique
1. b : ℕ
2. f : ℕb ⟶ 𝔹
3. x : ℕb
4. ↑(f x)
5. ∀y:ℕb. ((↑(f y))
⇒ (y = x ∈ ℤ))
6. ∃n:ℕb. (↑(f n))
7. ↑(f mu(f))
8. ∀[i:ℕb]. ¬↑(f i) supposing i < mu(f)
⊢ mu(f) = x ∈ ℤ
BY
{ ((MoveToConcl (-2)) THEN GenConcl ⌜mu(f) = y ∈ ℕb⌝⋅ THEN Try ((Auto THEN BackThruSomeHyp THEN Auto))) }
1
.....wf.....
1. b : ℕ
2. f : ℕb ⟶ 𝔹
3. x : ℕb
4. ↑(f x)
5. ∀y:ℕb. ((↑(f y))
⇒ (y = x ∈ ℤ))
6. ∃n:ℕb. (↑(f n))
7. ∀[i:ℕb]. ¬↑(f i) supposing i < mu(f)
⊢ mu(f) ∈ ℕb
Latex:
Latex:
1. b : \mBbbN{}
2. f : \mBbbN{}b {}\mrightarrow{} \mBbbB{}
3. x : \mBbbN{}b
4. \muparrow{}(f x)
5. \mforall{}y:\mBbbN{}b. ((\muparrow{}(f y)) {}\mRightarrow{} (y = x))
6. \mexists{}n:\mBbbN{}b. (\muparrow{}(f n))
7. \muparrow{}(f mu(f))
8. \mforall{}[i:\mBbbN{}b]. \mneg{}\muparrow{}(f i) supposing i < mu(f)
\mvdash{} mu(f) = x
By
Latex:
((MoveToConcl (-2)) THEN GenConcl \mkleeneopen{}mu(f) = y\mkleeneclose{}\mcdot{} THEN Try ((Auto THEN BackThruSomeHyp THEN Auto)))
Home
Index