Nuprl Lemma : mu-bound-unique

[b:ℕ]. ∀[f:ℕb ⟶ 𝔹]. ∀[x:ℕb].  mu(f) x ∈ ℤ supposing (↑(f x)) ∧ (∀y:ℕb. ((↑(f y))  (y x ∈ ℤ)))


Proof




Definitions occuring in Statement :  mu: mu(f) int_seg: {i..j-} nat: assert: b bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] implies:  Q and: P ∧ Q apply: a function: x:A ⟶ B[x] natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q exists: x:A. B[x] prop: nat: guard: {T} so_lambda: λ2x.t[x] implies:  Q int_seg: {i..j-} so_apply: x[s] all: x:A. B[x]
Lemmas referenced :  assert_wf int_seg_wf mu-bound-property all_wf equal_wf bool_wf nat_wf mu-bound
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin dependent_pairFormation hypothesisEquality hypothesis extract_by_obid isectElimination applyEquality functionExtensionality natural_numberEquality setElimination rename because_Cache independent_isectElimination productEquality sqequalRule lambdaEquality functionEquality intEquality isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry lambdaFormation dependent_functionElimination independent_functionElimination

Latex:
\mforall{}[b:\mBbbN{}].  \mforall{}[f:\mBbbN{}b  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[x:\mBbbN{}b].    mu(f)  =  x  supposing  (\muparrow{}(f  x))  \mwedge{}  (\mforall{}y:\mBbbN{}b.  ((\muparrow{}(f  y))  {}\mRightarrow{}  (y  =  x)))



Date html generated: 2017_04_14-AM-09_19_01
Last ObjectModification: 2017_02_27-PM-03_55_46

Theory : int_2


Home Index