Nuprl Lemma : mu-bound-unique
∀[b:ℕ]. ∀[f:ℕb ⟶ 𝔹]. ∀[x:ℕb].  mu(f) = x ∈ ℤ supposing (↑(f x)) ∧ (∀y:ℕb. ((↑(f y)) 
⇒ (y = x ∈ ℤ)))
Proof
Definitions occuring in Statement : 
mu: mu(f)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
assert: ↑b
, 
bool: 𝔹
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
nat: ℕ
, 
guard: {T}
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
int_seg: {i..j-}
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
Lemmas referenced : 
assert_wf, 
int_seg_wf, 
mu-bound-property, 
all_wf, 
equal_wf, 
bool_wf, 
nat_wf, 
mu-bound
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
dependent_pairFormation, 
hypothesisEquality, 
hypothesis, 
extract_by_obid, 
isectElimination, 
applyEquality, 
functionExtensionality, 
natural_numberEquality, 
setElimination, 
rename, 
because_Cache, 
independent_isectElimination, 
productEquality, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
intEquality, 
isect_memberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
lambdaFormation, 
dependent_functionElimination, 
independent_functionElimination
Latex:
\mforall{}[b:\mBbbN{}].  \mforall{}[f:\mBbbN{}b  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[x:\mBbbN{}b].    mu(f)  =  x  supposing  (\muparrow{}(f  x))  \mwedge{}  (\mforall{}y:\mBbbN{}b.  ((\muparrow{}(f  y))  {}\mRightarrow{}  (y  =  x)))
Date html generated:
2017_04_14-AM-09_19_01
Last ObjectModification:
2017_02_27-PM-03_55_46
Theory : int_2
Home
Index