Nuprl Lemma : mu-bound
∀[b:ℕ]. ∀[f:ℕb ⟶ 𝔹].  mu(f) ∈ ℕb supposing ∃n:ℕb. (↑(f n))
Proof
Definitions occuring in Statement : 
mu: mu(f)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
assert: ↑b
, 
bool: 𝔹
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
mu: mu(f)
, 
uimplies: b supposing a
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
mu-ge-bound, 
exists_wf, 
int_seg_wf, 
assert_wf, 
bool_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesisEquality, 
sqequalRule, 
hypothesis, 
isect_memberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
lambdaEquality, 
applyEquality, 
functionEquality
Latex:
\mforall{}[b:\mBbbN{}].  \mforall{}[f:\mBbbN{}b  {}\mrightarrow{}  \mBbbB{}].    mu(f)  \mmember{}  \mBbbN{}b  supposing  \mexists{}n:\mBbbN{}b.  (\muparrow{}(f  n))
Date html generated:
2016_05_14-AM-07_29_53
Last ObjectModification:
2015_12_26-PM-01_26_21
Theory : int_2
Home
Index