Nuprl Lemma : mu-bound

[b:ℕ]. ∀[f:ℕb ⟶ 𝔹].  mu(f) ∈ ℕsupposing ∃n:ℕb. (↑(f n))


Proof




Definitions occuring in Statement :  mu: mu(f) int_seg: {i..j-} nat: assert: b bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] exists: x:A. B[x] member: t ∈ T apply: a function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: mu: mu(f) uimplies: supposing a prop: so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  mu-ge-bound exists_wf int_seg_wf assert_wf bool_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality setElimination rename hypothesisEquality sqequalRule hypothesis isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry lambdaEquality applyEquality functionEquality

Latex:
\mforall{}[b:\mBbbN{}].  \mforall{}[f:\mBbbN{}b  {}\mrightarrow{}  \mBbbB{}].    mu(f)  \mmember{}  \mBbbN{}b  supposing  \mexists{}n:\mBbbN{}b.  (\muparrow{}(f  n))



Date html generated: 2016_05_14-AM-07_29_53
Last ObjectModification: 2015_12_26-PM-01_26_21

Theory : int_2


Home Index