Nuprl Lemma : mu-ge-bound

[n,m:ℤ]. ∀[f:{n..m-} ⟶ 𝔹].  mu-ge(f;n) ∈ {n..m-supposing ∃k:{n..m-}. (↑(f k))


Proof




Definitions occuring in Statement :  mu-ge: mu-ge(f;n) int_seg: {i..j-} assert: b bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] exists: x:A. B[x] member: t ∈ T apply: a function: x:A ⟶ B[x] int:
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: so_lambda: λ2x.t[x] so_apply: x[s] decidable: Dec(P) or: P ∨ Q int_seg: {i..j-} lelt: i ≤ j < k mu-ge: mu-ge(f;n) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b has-value: (a)↓ subtype_rel: A ⊆B true: True
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf exists_wf int_seg_wf assert_wf bool_wf le_wf subtract_wf decidable__le intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma nat_wf int_seg_properties decidable__lt lelt_wf eqtt_to_assert eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot value-type-has-value int-value-type itermAdd_wf int_term_value_add_lemma subtype_rel_dep_function int_seg_subtype subtype_rel_self int_subtype_base assert_elim equal-wf-T-base intformeq_wf int_formula_prop_eq_lemma
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination axiomEquality equalityTransitivity equalitySymmetry applyEquality functionExtensionality functionEquality isect_memberFormation productElimination because_Cache unionElimination dependent_set_memberEquality equalityElimination promote_hyp instantiate cumulativity callbyvalueReduce addEquality applyLambdaEquality

Latex:
\mforall{}[n,m:\mBbbZ{}].  \mforall{}[f:\{n..m\msupminus{}\}  {}\mrightarrow{}  \mBbbB{}].    mu-ge(f;n)  \mmember{}  \{n..m\msupminus{}\}  supposing  \mexists{}k:\{n..m\msupminus{}\}.  (\muparrow{}(f  k))



Date html generated: 2017_04_14-AM-09_18_35
Last ObjectModification: 2017_02_27-PM-03_55_05

Theory : int_2


Home Index