Nuprl Lemma : mu-ge-bound
∀[n,m:ℤ]. ∀[f:{n..m-} ⟶ 𝔹].  mu-ge(f;n) ∈ {n..m-} supposing ∃k:{n..m-}. (↑(f k))
Proof
Definitions occuring in Statement : 
mu-ge: mu-ge(f;n), 
int_seg: {i..j-}, 
assert: ↑b, 
bool: 𝔹, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
exists: ∃x:A. B[x], 
member: t ∈ T, 
apply: f a, 
function: x:A ⟶ B[x], 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
nat: ℕ, 
implies: P ⇒ Q, 
false: False, 
ge: i ≥ j , 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
not: ¬A, 
top: Top, 
and: P ∧ Q, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
decidable: Dec(P), 
or: P ∨ Q, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
mu-ge: mu-ge(f;n), 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
has-value: (a)↓, 
subtype_rel: A ⊆r B, 
true: True
Lemmas referenced : 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
exists_wf, 
int_seg_wf, 
assert_wf, 
bool_wf, 
le_wf, 
subtract_wf, 
decidable__le, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
nat_wf, 
int_seg_properties, 
decidable__lt, 
lelt_wf, 
eqtt_to_assert, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
value-type-has-value, 
int-value-type, 
itermAdd_wf, 
int_term_value_add_lemma, 
subtype_rel_dep_function, 
int_seg_subtype, 
subtype_rel_self, 
int_subtype_base, 
assert_elim, 
equal-wf-T-base, 
intformeq_wf, 
int_formula_prop_eq_lemma
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
sqequalRule, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
independent_functionElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
applyEquality, 
functionExtensionality, 
functionEquality, 
isect_memberFormation, 
productElimination, 
because_Cache, 
unionElimination, 
dependent_set_memberEquality, 
equalityElimination, 
promote_hyp, 
instantiate, 
cumulativity, 
callbyvalueReduce, 
addEquality, 
applyLambdaEquality
Latex:
\mforall{}[n,m:\mBbbZ{}].  \mforall{}[f:\{n..m\msupminus{}\}  {}\mrightarrow{}  \mBbbB{}].    mu-ge(f;n)  \mmember{}  \{n..m\msupminus{}\}  supposing  \mexists{}k:\{n..m\msupminus{}\}.  (\muparrow{}(f  k))
Date html generated:
2017_04_14-AM-09_18_35
Last ObjectModification:
2017_02_27-PM-03_55_05
Theory : int_2
Home
Index