Nuprl Lemma : mu-bound-property

[b:ℕ]. ∀[f:ℕb ⟶ 𝔹].  {(↑(f mu(f))) ∧ (∀[i:ℕb]. ¬↑(f i) supposing i < mu(f))} supposing ∃n:ℕb. (↑(f n))


Proof




Definitions occuring in Statement :  mu: mu(f) int_seg: {i..j-} nat: assert: b bool: 𝔹 less_than: a < b uimplies: supposing a uall: [x:A]. B[x] guard: {T} exists: x:A. B[x] not: ¬A and: P ∧ Q apply: a function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T guard: {T} nat: so_lambda: λ2x.t[x] so_apply: x[s] exists: x:A. B[x] prop: int_seg: {i..j-} subtype_rel: A ⊆B implies:  Q sq_stable: SqStable(P) not: ¬A false: False squash: T all: x:A. B[x] mu: mu(f) and: P ∧ Q cand: c∧ B lelt: i ≤ j < k le: A ≤ B less_than: a < b
Lemmas referenced :  lelt_wf mu-ge-bound-property assert_witness sq_stable__not sq_stable__uall sq_stable__and squash_wf not_wf less_than_wf isect_wf uall_wf nat_wf bool_wf assert_wf int_seg_wf exists_wf mu-bound
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination hypothesis natural_numberEquality setElimination rename sqequalRule lambdaEquality applyEquality functionEquality isect_memberEquality equalityTransitivity equalitySymmetry because_Cache independent_functionElimination lambdaFormation introduction dependent_functionElimination voidElimination imageMemberEquality baseClosed imageElimination productElimination independent_pairFormation dependent_set_memberEquality

Latex:
\mforall{}[b:\mBbbN{}].  \mforall{}[f:\mBbbN{}b  {}\mrightarrow{}  \mBbbB{}].
    \{(\muparrow{}(f  mu(f)))  \mwedge{}  (\mforall{}[i:\mBbbN{}b].  \mneg{}\muparrow{}(f  i)  supposing  i  <  mu(f))\}  supposing  \mexists{}n:\mBbbN{}b.  (\muparrow{}(f  n))



Date html generated: 2016_05_14-AM-07_29_57
Last ObjectModification: 2016_01_14-PM-09_58_51

Theory : int_2


Home Index