Nuprl Lemma : mu-ge-bound-property
∀n,m:ℤ. ∀f:{n..m-} ⟶ 𝔹.  ((∃m:{n..m-}. (↑(f m))) 
⇒ {(↑(f mu-ge(f;n))) ∧ (∀[i:{n..mu-ge(f;n)-}]. (¬↑(f i)))})
Proof
Definitions occuring in Statement : 
mu-ge: mu-ge(f;n)
, 
int_seg: {i..j-}
, 
assert: ↑b
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
guard: {T}
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
nat: ℕ
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
and: P ∧ Q
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
int_seg: {i..j-}
, 
cand: A c∧ B
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
mu-ge: mu-ge(f;n)
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
assert: ↑b
, 
label: ...$L... t
, 
rev_uimplies: rev_uimplies(P;Q)
, 
le: A ≤ B
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
subtract: n - m
, 
less_than': less_than'(a;b)
, 
true: True
, 
has-value: (a)↓
Lemmas referenced : 
assert_wf, 
int_seg_wf, 
bool_wf, 
istype-int, 
mu-ge-bound, 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
assert_witness, 
subtract-1-ge-0, 
nat_wf, 
int_seg_properties, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
lelt_wf, 
le_wf, 
subtract_wf, 
decidable__lt, 
intformnot_wf, 
int_formula_prop_not_lemma, 
decidable__le, 
eqtt_to_assert, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
assert_functionality_wrt_uiff, 
decidable__equal_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
int_subtype_base, 
itermAdd_wf, 
int_term_value_add_lemma, 
subtype_rel_function, 
int_seg_subtype, 
istype-false, 
not-le-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
add-mul-special, 
zero-mul, 
add-zero, 
add-associates, 
add-commutes, 
le-add-cancel, 
le_reflexive, 
subtype_rel_self, 
value-type-has-value, 
int-value-type, 
iff_weakening_uiff
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaFormation_alt, 
cut, 
sqequalRule, 
Error :productIsType, 
Error :universeIsType, 
because_Cache, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
applyEquality, 
hypothesisEquality, 
hypothesis, 
Error :functionIsType, 
Error :inhabitedIsType, 
setElimination, 
rename, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
Error :dependent_pairFormation_alt, 
Error :lambdaEquality_alt, 
int_eqEquality, 
dependent_functionElimination, 
Error :isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
productElimination, 
independent_pairEquality, 
Error :functionIsTypeImplies, 
equalityTransitivity, 
equalitySymmetry, 
Error :isect_memberFormation_alt, 
applyLambdaEquality, 
functionExtensionality, 
Error :dependent_set_memberEquality_alt, 
unionElimination, 
equalityElimination, 
Error :equalityIsType1, 
promote_hyp, 
instantiate, 
cumulativity, 
Error :equalityIsType4, 
baseApply, 
closedConclusion, 
baseClosed, 
addEquality, 
minusEquality, 
multiplyEquality, 
intEquality, 
callbyvalueReduce
Latex:
\mforall{}n,m:\mBbbZ{}.  \mforall{}f:\{n..m\msupminus{}\}  {}\mrightarrow{}  \mBbbB{}.
    ((\mexists{}m:\{n..m\msupminus{}\}.  (\muparrow{}(f  m)))  {}\mRightarrow{}  \{(\muparrow{}(f  mu-ge(f;n)))  \mwedge{}  (\mforall{}[i:\{n..mu-ge(f;n)\msupminus{}\}].  (\mneg{}\muparrow{}(f  i)))\})
Date html generated:
2019_06_20-PM-01_16_54
Last ObjectModification:
2018_10_06-AM-11_21_37
Theory : int_2
Home
Index