Nuprl Lemma : mu-ge-bound-property

n,m:ℤ. ∀f:{n..m-} ⟶ 𝔹.  ((∃m:{n..m-}. (↑(f m)))  {(↑(f mu-ge(f;n))) ∧ (∀[i:{n..mu-ge(f;n)-}]. (¬↑(f i)))})


Proof




Definitions occuring in Statement :  mu-ge: mu-ge(f;n) int_seg: {i..j-} assert: b bool: 𝔹 uall: [x:A]. B[x] guard: {T} all: x:A. B[x] exists: x:A. B[x] not: ¬A implies:  Q and: P ∧ Q apply: a function: x:A ⟶ B[x] int:
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q exists: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] prop: nat: false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top and: P ∧ Q guard: {T} subtype_rel: A ⊆B int_seg: {i..j-} cand: c∧ B lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q mu-ge: mu-ge(f;n) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b label: ...$L... t rev_uimplies: rev_uimplies(P;Q) le: A ≤ B iff: ⇐⇒ Q rev_implies:  Q subtract: m less_than': less_than'(a;b) true: True has-value: (a)↓
Lemmas referenced :  assert_wf int_seg_wf bool_wf istype-int mu-ge-bound nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf assert_witness subtract-1-ge-0 nat_wf int_seg_properties itermSubtract_wf int_term_value_subtract_lemma lelt_wf le_wf subtract_wf decidable__lt intformnot_wf int_formula_prop_not_lemma decidable__le eqtt_to_assert eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot assert_functionality_wrt_uiff decidable__equal_int intformeq_wf int_formula_prop_eq_lemma int_subtype_base itermAdd_wf int_term_value_add_lemma subtype_rel_function int_seg_subtype istype-false not-le-2 condition-implies-le minus-add minus-one-mul add-swap minus-one-mul-top add-mul-special zero-mul add-zero add-associates add-commutes le-add-cancel le_reflexive subtype_rel_self value-type-has-value int-value-type iff_weakening_uiff
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  cut sqequalRule Error :productIsType,  Error :universeIsType,  because_Cache introduction extract_by_obid sqequalHypSubstitution isectElimination thin applyEquality hypothesisEquality hypothesis Error :functionIsType,  Error :inhabitedIsType,  setElimination rename intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  int_eqEquality dependent_functionElimination Error :isect_memberEquality_alt,  voidElimination independent_pairFormation productElimination independent_pairEquality Error :functionIsTypeImplies,  equalityTransitivity equalitySymmetry Error :isect_memberFormation_alt,  applyLambdaEquality functionExtensionality Error :dependent_set_memberEquality_alt,  unionElimination equalityElimination Error :equalityIsType1,  promote_hyp instantiate cumulativity Error :equalityIsType4,  baseApply closedConclusion baseClosed addEquality minusEquality multiplyEquality intEquality callbyvalueReduce

Latex:
\mforall{}n,m:\mBbbZ{}.  \mforall{}f:\{n..m\msupminus{}\}  {}\mrightarrow{}  \mBbbB{}.
    ((\mexists{}m:\{n..m\msupminus{}\}.  (\muparrow{}(f  m)))  {}\mRightarrow{}  \{(\muparrow{}(f  mu-ge(f;n)))  \mwedge{}  (\mforall{}[i:\{n..mu-ge(f;n)\msupminus{}\}].  (\mneg{}\muparrow{}(f  i)))\})



Date html generated: 2019_06_20-PM-01_16_54
Last ObjectModification: 2018_10_06-AM-11_21_37

Theory : int_2


Home Index