Step
*
of Lemma
mu-property2
∀[P:ℕ ⟶ ℙ]. ∀d:∀n:ℕ. Dec(P[n]). {P[mu(d)] ∧ (∀i:ℕ. ¬P[i] supposing i < mu(d))} supposing ∃n:ℕ. P[n]
BY
{ TACTIC:TACTIC:((InstLemma `mu-ge-property2` [⌜0⌝]⋅ THENA Auto)
THEN ParallelLast
THEN Unfold `mu` 0
THEN RepeatFor 4 (ParallelLast)) }
1
1. ∀[P:{0...} ⟶ ℙ]. ∀d:∀n:{0...}. Dec(P[n]). {P[mu-ge(d;0)] ∧ (∀[i:ℕmu-ge(d;0)]. (¬P[i]))} supposing ∃m:{0...}. P[m]
2. [P] : ℕ ⟶ ℙ
3. ∀d:∀n:{0...}. Dec(P[n]). {P[mu-ge(d;0)] ∧ (∀[i:ℕmu-ge(d;0)]. (¬P[i]))} supposing ∃m:{0...}. P[m]
4. d : ∀n:ℕ. Dec(P[n])
5. [%5] : ∃n:ℕ. P[n]
6. P[mu-ge(d;0)]
7. ∀[i:ℕmu-ge(d;0)]. (¬P[i])
⊢ ∀i:ℕ. ¬P[i] supposing i < mu-ge(d;0)
Latex:
Latex:
\mforall{}[P:\mBbbN{} {}\mrightarrow{} \mBbbP{}]. \mforall{}d:\mforall{}n:\mBbbN{}. Dec(P[n]). \{P[mu(d)] \mwedge{} (\mforall{}i:\mBbbN{}. \mneg{}P[i] supposing i < mu(d))\} supposing \mexists{}n:\mBbbN{}. P[n]
By
Latex:
TACTIC:TACTIC:((InstLemma `mu-ge-property2` [\mkleeneopen{}0\mkleeneclose{}]\mcdot{} THENA Auto)
THEN ParallelLast
THEN Unfold `mu` 0
THEN RepeatFor 4 (ParallelLast))
Home
Index