Nuprl Lemma : mu-property2

[P:ℕ ⟶ ℙ]. ∀d:∀n:ℕDec(P[n]). {P[mu(d)] ∧ (∀i:ℕ. ¬P[i] supposing i < mu(d))} supposing ∃n:ℕP[n]


Proof




Definitions occuring in Statement :  mu: mu(f) nat: less_than: a < b decidable: Dec(P) uimplies: supposing a uall: [x:A]. B[x] prop: guard: {T} so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] not: ¬A and: P ∧ Q function: x:A ⟶ B[x]
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B prop: uimplies: supposing a le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q mu: mu(f) nat: int_upper: {i...} so_lambda: λ2x.t[x] so_apply: x[s] exists: x:A. B[x] guard: {T} decidable: Dec(P) or: P ∨ Q top: Top isl: isl(x) assert: b ifthenelse: if then else fi  btrue: tt true: True bfalse: ff int_seg: {i..j-} lelt: i ≤ j < k ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla)
Lemmas referenced :  mu-ge-property2 subtype_rel_function nat_wf int_upper_wf upper_subtype_nat istype-false subtype_rel_self all_wf decidable_wf mu-ge_wf2 subtype_rel_dep_function top_wf subtype_rel_union not_wf istype-void assert_wf btrue_wf bfalse_wf less_than_wf nat_properties int_upper_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf le_wf
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity dependent_functionElimination thin natural_numberEquality Error :isect_memberFormation_alt,  hypothesis isectElimination hypothesisEquality applyEquality instantiate cumulativity universeEquality because_Cache independent_isectElimination sqequalRule independent_pairFormation Error :lambdaFormation_alt,  Error :lambdaEquality_alt,  Error :universeIsType,  productElimination Error :dependent_pairFormation_alt,  promote_hyp Error :productIsType,  Error :functionIsType,  unionEquality Error :isect_memberEquality_alt,  voidElimination Error :unionIsType,  functionExtensionality Error :inhabitedIsType,  unionElimination Error :equalityIsType1,  equalityTransitivity equalitySymmetry independent_functionElimination Error :functionIsTypeImplies,  setElimination rename Error :dependent_set_memberEquality_alt,  applyLambdaEquality approximateComputation int_eqEquality

Latex:
\mforall{}[P:\mBbbN{}  {}\mrightarrow{}  \mBbbP{}].  \mforall{}d:\mforall{}n:\mBbbN{}.  Dec(P[n]).  \{P[mu(d)]  \mwedge{}  (\mforall{}i:\mBbbN{}.  \mneg{}P[i]  supposing  i  <  mu(d))\}  supposing  \mexists{}n:\mBbbN{}.  P[n]



Date html generated: 2019_06_20-PM-01_17_23
Last ObjectModification: 2018_10_06-AM-11_21_44

Theory : int_2


Home Index