Nuprl Lemma : mu-ge_wf2
∀[n:ℤ]. ∀[f:{n...} ⟶ (Top + Top)].  mu-ge(f;n) ∈ {n...} supposing ∃m:{n...}. (↑isl(f m))
Proof
Definitions occuring in Statement : 
mu-ge: mu-ge(f;n)
, 
int_upper: {i...}
, 
assert: ↑b
, 
isl: isl(x)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
union: left + right
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
mu-ge: mu-ge(f;n)
, 
ifthenelse: if b then t else f fi 
, 
all: ∀x:A. B[x]
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
not: ¬A
, 
top: Top
, 
and: P ∧ Q
, 
int_upper: {i...}
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
isl: isl(x)
, 
assert: ↑b
, 
btrue: tt
, 
bfalse: ff
, 
has-value: (a)↓
Lemmas referenced : 
exists_wf, 
int_upper_wf, 
assert_wf, 
isl_wf, 
top_wf, 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
le_wf, 
subtract_wf, 
decidable__le, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
nat_wf, 
subtype_base_sq, 
int_subtype_base, 
int_upper_properties, 
decidable__equal_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
true_wf, 
false_wf, 
equal_wf, 
value-type-has-value, 
itermAdd_wf, 
int_term_value_add_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
isect_memberEquality, 
because_Cache, 
functionEquality, 
unionEquality, 
intEquality, 
lambdaFormation, 
setElimination, 
rename, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
dependent_functionElimination, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
independent_functionElimination, 
unionElimination, 
instantiate, 
cumulativity, 
dependent_set_memberEquality, 
callbyvalueReduce, 
applyLambdaEquality
Latex:
\mforall{}[n:\mBbbZ{}].  \mforall{}[f:\{n...\}  {}\mrightarrow{}  (Top  +  Top)].    mu-ge(f;n)  \mmember{}  \{n...\}  supposing  \mexists{}m:\{n...\}.  (\muparrow{}isl(f  m))
Date html generated:
2017_04_14-AM-09_18_07
Last ObjectModification:
2017_02_27-PM-03_54_24
Theory : int_2
Home
Index