Nuprl Lemma : mu-ge_wf2

[n:ℤ]. ∀[f:{n...} ⟶ (Top Top)].  mu-ge(f;n) ∈ {n...} supposing ∃m:{n...}. (↑isl(f m))


Proof




Definitions occuring in Statement :  mu-ge: mu-ge(f;n) int_upper: {i...} assert: b isl: isl(x) uimplies: supposing a uall: [x:A]. B[x] top: Top exists: x:A. B[x] member: t ∈ T apply: a function: x:A ⟶ B[x] union: left right int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a exists: x:A. B[x] prop: so_lambda: λ2x.t[x] so_apply: x[s] mu-ge: mu-ge(f;n) ifthenelse: if then else fi  all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A top: Top and: P ∧ Q int_upper: {i...} decidable: Dec(P) or: P ∨ Q sq_type: SQType(T) guard: {T} isl: isl(x) assert: b btrue: tt bfalse: ff has-value: (a)↓
Lemmas referenced :  exists_wf int_upper_wf assert_wf isl_wf top_wf nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf le_wf subtract_wf decidable__le intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma nat_wf subtype_base_sq int_subtype_base int_upper_properties decidable__equal_int intformeq_wf int_formula_prop_eq_lemma true_wf false_wf equal_wf value-type-has-value itermAdd_wf int_term_value_add_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry extract_by_obid isectElimination hypothesisEquality lambdaEquality applyEquality functionExtensionality isect_memberEquality because_Cache functionEquality unionEquality intEquality lambdaFormation setElimination rename intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation int_eqEquality dependent_functionElimination voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination unionElimination instantiate cumulativity dependent_set_memberEquality callbyvalueReduce applyLambdaEquality

Latex:
\mforall{}[n:\mBbbZ{}].  \mforall{}[f:\{n...\}  {}\mrightarrow{}  (Top  +  Top)].    mu-ge(f;n)  \mmember{}  \{n...\}  supposing  \mexists{}m:\{n...\}.  (\muparrow{}isl(f  m))



Date html generated: 2017_04_14-AM-09_18_07
Last ObjectModification: 2017_02_27-PM-03_54_24

Theory : int_2


Home Index