Step
*
1
of Lemma
rem-mul
1. a : ℤ
2. n : ℤ-o
3. m : ℤ-o
4. (a * n) ÷ m * n ~ a ÷ m
⊢ (a * n rem m * n) = ((a rem m) * n) ∈ ℤ
BY
{ ((InstLemma `div_rem_sum` [⌜a⌝;⌜m⌝]⋅ THENA Auto) THEN (InstLemma `div_rem_sum` [⌜a * n⌝;⌜m * n⌝]⋅ THENA Auto)) }
1
1. a : ℤ
2. n : ℤ-o
3. m : ℤ-o
4. (a * n) ÷ m * n ~ a ÷ m
5. a = (((a ÷ m) * m) + (a rem m)) ∈ ℤ
6. (a * n) = ((((a * n) ÷ m * n) * m * n) + (a * n rem m * n)) ∈ ℤ
⊢ (a * n rem m * n) = ((a rem m) * n) ∈ ℤ
Latex:
Latex:
1. a : \mBbbZ{}
2. n : \mBbbZ{}\msupminus{}\msupzero{}
3. m : \mBbbZ{}\msupminus{}\msupzero{}
4. (a * n) \mdiv{} m * n \msim{} a \mdiv{} m
\mvdash{} (a * n rem m * n) = ((a rem m) * n)
By
Latex:
((InstLemma `div\_rem\_sum` [\mkleeneopen{}a\mkleeneclose{};\mkleeneopen{}m\mkleeneclose{}]\mcdot{} THENA Auto)
THEN (InstLemma `div\_rem\_sum` [\mkleeneopen{}a * n\mkleeneclose{};\mkleeneopen{}m * n\mkleeneclose{}]\mcdot{} THENA Auto)
)
Home
Index