Nuprl Lemma : rem-mul

[a:ℤ]. ∀[n,m:ℤ-o].  ((a rem n) ((a rem m) n) ∈ ℤ)


Proof




Definitions occuring in Statement :  int_nzero: -o uall: [x:A]. B[x] remainder: rem m multiply: m int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T int_nzero: -o uimplies: supposing a nequal: a ≠ b ∈  not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False all: x:A. B[x] top: Top and: P ∧ Q prop: decidable: Dec(P) or: P ∨ Q uiff: uiff(P;Q)
Lemmas referenced :  false_wf int_term_value_add_lemma int_term_value_mul_lemma itermAdd_wf itermMultiply_wf multiply-is-int-iff add-is-int-iff decidable__equal_int mul-swap mul-distributes mul-commutes mul_preserves_eq nequal_wf equal_wf int_formula_prop_wf int_formula_prop_not_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_and_lemma intformnot_wf itermConstant_wf itermVar_wf intformeq_wf intformand_wf satisfiable-full-omega-tt int_nzero_properties int_entire_a div_rem_sum int_nzero_wf div-mul-cancel
Rules used in proof :  cut lemma_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality intEquality multiplyEquality setElimination rename dependent_set_memberEquality independent_isectElimination lambdaFormation natural_numberEquality dependent_pairFormation lambdaEquality int_eqEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll equalityTransitivity equalitySymmetry divideEquality because_Cache unionElimination pointwiseFunctionality promote_hyp baseApply closedConclusion baseClosed productElimination

Latex:
\mforall{}[a:\mBbbZ{}].  \mforall{}[n,m:\mBbbZ{}\msupminus{}\msupzero{}].    ((a  *  n  rem  m  *  n)  =  ((a  rem  m)  *  n))



Date html generated: 2016_05_14-AM-07_24_55
Last ObjectModification: 2016_01_14-PM-10_01_39

Theory : int_2


Home Index