Nuprl Lemma : rem-mul
∀[a:ℤ]. ∀[n,m:ℤ-o].  ((a * n rem m * n) = ((a rem m) * n) ∈ ℤ)
Proof
Definitions occuring in Statement : 
int_nzero: ℤ-o
, 
uall: ∀[x:A]. B[x]
, 
remainder: n rem m
, 
multiply: n * m
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int_nzero: ℤ-o
, 
uimplies: b supposing a
, 
nequal: a ≠ b ∈ T 
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
all: ∀x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uiff: uiff(P;Q)
Lemmas referenced : 
false_wf, 
int_term_value_add_lemma, 
int_term_value_mul_lemma, 
itermAdd_wf, 
itermMultiply_wf, 
multiply-is-int-iff, 
add-is-int-iff, 
decidable__equal_int, 
mul-swap, 
mul-distributes, 
mul-commutes, 
mul_preserves_eq, 
nequal_wf, 
equal_wf, 
int_formula_prop_wf, 
int_formula_prop_not_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_and_lemma, 
intformnot_wf, 
itermConstant_wf, 
itermVar_wf, 
intformeq_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
int_nzero_properties, 
int_entire_a, 
div_rem_sum, 
int_nzero_wf, 
div-mul-cancel
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
intEquality, 
multiplyEquality, 
setElimination, 
rename, 
dependent_set_memberEquality, 
independent_isectElimination, 
lambdaFormation, 
natural_numberEquality, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
computeAll, 
equalityTransitivity, 
equalitySymmetry, 
divideEquality, 
because_Cache, 
unionElimination, 
pointwiseFunctionality, 
promote_hyp, 
baseApply, 
closedConclusion, 
baseClosed, 
productElimination
Latex:
\mforall{}[a:\mBbbZ{}].  \mforall{}[n,m:\mBbbZ{}\msupminus{}\msupzero{}].    ((a  *  n  rem  m  *  n)  =  ((a  rem  m)  *  n))
Date html generated:
2016_05_14-AM-07_24_55
Last ObjectModification:
2016_01_14-PM-10_01_39
Theory : int_2
Home
Index