Nuprl Lemma : div-mul-cancel

[a:ℤ]. ∀[n,m:ℤ-o].  ((a n) ÷ a ÷ m)


Proof




Definitions occuring in Statement :  int_nzero: -o uall: [x:A]. B[x] divide: n ÷ m multiply: m int: sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a int_nzero: -o top: Top nequal: a ≠ b ∈  not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False all: x:A. B[x] and: P ∧ Q prop: sq_type: SQType(T) guard: {T}
Lemmas referenced :  int_nzero_wf equal_wf int_formula_prop_wf int_formula_prop_not_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_and_lemma intformnot_wf itermConstant_wf itermVar_wf intformeq_wf intformand_wf satisfiable-full-omega-tt int_nzero_properties div-cancel div_div mul-commutes int_subtype_base subtype_base_sq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin instantiate lemma_by_obid sqequalHypSubstitution isectElimination because_Cache independent_isectElimination hypothesis setElimination rename hypothesisEquality isect_memberEquality voidElimination voidEquality sqequalRule multiplyEquality divideEquality lambdaFormation natural_numberEquality dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination independent_pairFormation computeAll equalityTransitivity equalitySymmetry independent_functionElimination sqequalAxiom

Latex:
\mforall{}[a:\mBbbZ{}].  \mforall{}[n,m:\mBbbZ{}\msupminus{}\msupzero{}].    ((a  *  n)  \mdiv{}  m  *  n  \msim{}  a  \mdiv{}  m)



Date html generated: 2016_05_14-AM-07_24_50
Last ObjectModification: 2016_01_14-PM-10_01_18

Theory : int_2


Home Index