Nuprl Lemma : div-mul-cancel
∀[a:ℤ]. ∀[n,m:ℤ-o].  ((a * n) ÷ m * n ~ a ÷ m)
Proof
Definitions occuring in Statement : 
int_nzero: ℤ-o, 
uall: ∀[x:A]. B[x], 
divide: n ÷ m, 
multiply: n * m, 
int: ℤ, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
int_nzero: ℤ-o, 
top: Top, 
nequal: a ≠ b ∈ T , 
not: ¬A, 
implies: P ⇒ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
all: ∀x:A. B[x], 
and: P ∧ Q, 
prop: ℙ, 
sq_type: SQType(T), 
guard: {T}
Lemmas referenced : 
int_nzero_wf, 
equal_wf, 
int_formula_prop_wf, 
int_formula_prop_not_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_and_lemma, 
intformnot_wf, 
itermConstant_wf, 
itermVar_wf, 
intformeq_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
int_nzero_properties, 
div-cancel, 
div_div, 
mul-commutes, 
int_subtype_base, 
subtype_base_sq
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
instantiate, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
because_Cache, 
independent_isectElimination, 
hypothesis, 
setElimination, 
rename, 
hypothesisEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
multiplyEquality, 
divideEquality, 
lambdaFormation, 
natural_numberEquality, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
independent_pairFormation, 
computeAll, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
sqequalAxiom
Latex:
\mforall{}[a:\mBbbZ{}].  \mforall{}[n,m:\mBbbZ{}\msupminus{}\msupzero{}].    ((a  *  n)  \mdiv{}  m  *  n  \msim{}  a  \mdiv{}  m)
Date html generated:
2016_05_14-AM-07_24_50
Last ObjectModification:
2016_01_14-PM-10_01_18
Theory : int_2
Home
Index