Nuprl Lemma : div_div
∀[a:ℤ]. ∀[n,m:ℤ-o].  (a ÷ n ÷ m ~ a ÷ n * m)
Proof
Definitions occuring in Statement : 
int_nzero: ℤ-o
, 
uall: ∀[x:A]. B[x]
, 
divide: n ÷ m
, 
multiply: n * m
, 
int: ℤ
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
int_nzero: ℤ-o
, 
sq_type: SQType(T)
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
nat: ℕ
, 
prop: ℙ
, 
nat_plus: ℕ+
, 
le: A ≤ B
, 
and: P ∧ Q
, 
nequal: a ≠ b ∈ T 
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
false: False
, 
uiff: uiff(P;Q)
, 
less_than': less_than'(a;b)
, 
true: True
, 
subtract: n - m
, 
subtype_rel: A ⊆r B
, 
top: Top
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
gt: i > j
, 
squash: ↓T
, 
int_lower: {...i}
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
subtype_base_sq, 
int_subtype_base, 
decidable__le, 
int_nzero_wf, 
istype-int, 
div_div_nat, 
le_wf, 
decidable__lt, 
false_wf, 
not-lt-2, 
not-equal-2, 
add_functionality_wrt_le, 
zero-add, 
add-zero, 
le-add-cancel, 
condition-implies-le, 
add-commutes, 
minus-add, 
minus-zero, 
less_than_wf, 
add-associates, 
int_entire_a, 
int_nzero_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformeq_wf, 
itermVar_wf, 
itermConstant_wf, 
intformnot_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_wf, 
equal-wf-base, 
neg_mul_arg_bounds, 
intformless_wf, 
intformle_wf, 
int_formula_prop_less_lemma, 
int_formula_prop_le_lemma, 
gt_wf, 
equal_wf, 
squash_wf, 
true_wf, 
div_4_to_1, 
itermMultiply_wf, 
int_term_value_mul_lemma, 
iff_weakening_equal, 
decidable__equal_int, 
itermMinus_wf, 
int_term_value_minus_lemma, 
divide_wf, 
not-le-2, 
minus-one-mul, 
minus-one-mul-top, 
div_2_to_1, 
div_lbound_1, 
zero-mul, 
div_anti_sym, 
div_3_to_1, 
member_wf, 
full-omega-unsat, 
istype-void, 
mul_nat_plus, 
istype-false, 
subtype_rel_self, 
div_bounds_2, 
div_anti_sym2, 
pos_mul_arg_bounds, 
div_bounds_3
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
thin, 
instantiate, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
cumulativity, 
intEquality, 
independent_isectElimination, 
hypothesis, 
dependent_functionElimination, 
natural_numberEquality, 
hypothesisEquality, 
unionElimination, 
because_Cache, 
setElimination, 
rename, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
axiomSqEquality, 
Error :inhabitedIsType, 
sqequalRule, 
Error :isect_memberEquality_alt, 
Error :universeIsType, 
dependent_set_memberEquality, 
productElimination, 
independent_pairFormation, 
lambdaFormation, 
voidElimination, 
addEquality, 
minusEquality, 
applyEquality, 
lambdaEquality, 
isect_memberEquality, 
voidEquality, 
divideEquality, 
multiplyEquality, 
dependent_pairFormation, 
int_eqEquality, 
computeAll, 
baseClosed, 
inrFormation, 
productEquality, 
imageElimination, 
universeEquality, 
imageMemberEquality, 
baseApply, 
closedConclusion, 
inlFormation, 
Error :lambdaEquality_alt, 
Error :lambdaFormation_alt, 
approximateComputation, 
Error :dependent_pairFormation_alt, 
Error :equalityIsType4, 
Error :dependent_set_memberEquality_alt, 
Error :inrFormation_alt, 
Error :productIsType
Latex:
\mforall{}[a:\mBbbZ{}].  \mforall{}[n,m:\mBbbZ{}\msupminus{}\msupzero{}].    (a  \mdiv{}  n  \mdiv{}  m  \msim{}  a  \mdiv{}  n  *  m)
Date html generated:
2019_06_20-PM-01_14_36
Last ObjectModification:
2018_10_04-PM-01_07_08
Theory : int_2
Home
Index