Nuprl Lemma : div_div

[a:ℤ]. ∀[n,m:ℤ-o].  (a ÷ n ÷ a ÷ m)


Proof




Definitions occuring in Statement :  int_nzero: -o uall: [x:A]. B[x] divide: n ÷ m multiply: m int: sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] decidable: Dec(P) or: P ∨ Q int_nzero: -o sq_type: SQType(T) implies:  Q guard: {T} nat: prop: nat_plus: + le: A ≤ B and: P ∧ Q nequal: a ≠ b ∈  iff: ⇐⇒ Q not: ¬A rev_implies:  Q false: False uiff: uiff(P;Q) less_than': less_than'(a;b) true: True subtract: m subtype_rel: A ⊆B top: Top satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] gt: i > j squash: T int_lower: {...i} rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  subtype_base_sq int_subtype_base decidable__le int_nzero_wf istype-int div_div_nat le_wf decidable__lt false_wf not-lt-2 not-equal-2 add_functionality_wrt_le zero-add add-zero le-add-cancel condition-implies-le add-commutes minus-add minus-zero less_than_wf add-associates int_entire_a int_nzero_properties satisfiable-full-omega-tt intformand_wf intformeq_wf itermVar_wf itermConstant_wf intformnot_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_not_lemma int_formula_prop_wf equal-wf-base neg_mul_arg_bounds intformless_wf intformle_wf int_formula_prop_less_lemma int_formula_prop_le_lemma gt_wf equal_wf squash_wf true_wf div_4_to_1 itermMultiply_wf int_term_value_mul_lemma iff_weakening_equal decidable__equal_int itermMinus_wf int_term_value_minus_lemma divide_wf not-le-2 minus-one-mul minus-one-mul-top div_2_to_1 div_lbound_1 zero-mul div_anti_sym div_3_to_1 member_wf full-omega-unsat istype-void mul_nat_plus istype-false subtype_rel_self div_bounds_2 div_anti_sym2 pos_mul_arg_bounds div_bounds_3
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut thin instantiate extract_by_obid sqequalHypSubstitution isectElimination cumulativity intEquality independent_isectElimination hypothesis dependent_functionElimination natural_numberEquality hypothesisEquality unionElimination because_Cache setElimination rename equalityTransitivity equalitySymmetry independent_functionElimination axiomSqEquality Error :inhabitedIsType,  sqequalRule Error :isect_memberEquality_alt,  Error :universeIsType,  dependent_set_memberEquality productElimination independent_pairFormation lambdaFormation voidElimination addEquality minusEquality applyEquality lambdaEquality isect_memberEquality voidEquality divideEquality multiplyEquality dependent_pairFormation int_eqEquality computeAll baseClosed inrFormation productEquality imageElimination universeEquality imageMemberEquality baseApply closedConclusion inlFormation Error :lambdaEquality_alt,  Error :lambdaFormation_alt,  approximateComputation Error :dependent_pairFormation_alt,  Error :equalityIsType4,  Error :dependent_set_memberEquality_alt,  Error :inrFormation_alt,  Error :productIsType

Latex:
\mforall{}[a:\mBbbZ{}].  \mforall{}[n,m:\mBbbZ{}\msupminus{}\msupzero{}].    (a  \mdiv{}  n  \mdiv{}  m  \msim{}  a  \mdiv{}  n  *  m)



Date html generated: 2019_06_20-PM-01_14_36
Last ObjectModification: 2018_10_04-PM-01_07_08

Theory : int_2


Home Index