Nuprl Lemma : div_div_nat

[a:ℕ]. ∀[n,m:ℕ+].  (a ÷ n ÷ a ÷ m)


Proof




Definitions occuring in Statement :  nat_plus: + nat: uall: [x:A]. B[x] divide: n ÷ m multiply: m sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a uiff: uiff(P;Q) and: P ∧ Q all: x:A. B[x] exists: x:A. B[x] sq_type: SQType(T) implies:  Q guard: {T} div_nrel: Div(a;n;q) lelt: i ≤ j < k top: Top nat_plus: + nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A prop:
Lemmas referenced :  decidable__le int_formula_prop_wf int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_term_value_mul_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformle_wf itermConstant_wf itermAdd_wf itermVar_wf itermMultiply_wf intformless_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__lt nat_plus_properties nat_properties mul_cancel_in_lt add-commutes one-mul mul-commutes mul-swap mul-associates mul-distributes nat_wf nat_plus_wf div_elim mul_nat_plus divide_wf div_unique2 int_subtype_base subtype_base_sq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin instantiate lemma_by_obid sqequalHypSubstitution isectElimination because_Cache independent_isectElimination hypothesis hypothesisEquality productElimination dependent_functionElimination equalityTransitivity equalitySymmetry independent_functionElimination independent_pairFormation sqequalAxiom sqequalRule isect_memberEquality voidElimination voidEquality setElimination rename multiplyEquality addEquality natural_numberEquality unionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality computeAll

Latex:
\mforall{}[a:\mBbbN{}].  \mforall{}[n,m:\mBbbN{}\msupplus{}].    (a  \mdiv{}  n  \mdiv{}  m  \msim{}  a  \mdiv{}  n  *  m)



Date html generated: 2016_05_14-AM-07_24_37
Last ObjectModification: 2016_01_14-PM-10_02_25

Theory : int_2


Home Index