Nuprl Lemma : div_div_nat
∀[a:ℕ]. ∀[n,m:ℕ+].  (a ÷ n ÷ m ~ a ÷ n * m)
Proof
Definitions occuring in Statement : 
nat_plus: ℕ+
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
divide: n ÷ m
, 
multiply: n * m
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
sq_type: SQType(T)
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
div_nrel: Div(a;n;q)
, 
lelt: i ≤ j < k
, 
top: Top
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
not: ¬A
, 
prop: ℙ
Lemmas referenced : 
decidable__le, 
int_formula_prop_wf, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_term_value_mul_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
intformle_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
itermMultiply_wf, 
intformless_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__lt, 
nat_plus_properties, 
nat_properties, 
mul_cancel_in_lt, 
add-commutes, 
one-mul, 
mul-commutes, 
mul-swap, 
mul-associates, 
mul-distributes, 
nat_wf, 
nat_plus_wf, 
div_elim, 
mul_nat_plus, 
divide_wf, 
div_unique2, 
int_subtype_base, 
subtype_base_sq
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
instantiate, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
because_Cache, 
independent_isectElimination, 
hypothesis, 
hypothesisEquality, 
productElimination, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
independent_pairFormation, 
sqequalAxiom, 
sqequalRule, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
setElimination, 
rename, 
multiplyEquality, 
addEquality, 
natural_numberEquality, 
unionElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
computeAll
Latex:
\mforall{}[a:\mBbbN{}].  \mforall{}[n,m:\mBbbN{}\msupplus{}].    (a  \mdiv{}  n  \mdiv{}  m  \msim{}  a  \mdiv{}  n  *  m)
Date html generated:
2016_05_14-AM-07_24_37
Last ObjectModification:
2016_01_14-PM-10_02_25
Theory : int_2
Home
Index