Nuprl Lemma : div_lbound_1

[a:ℕ]. ∀[n:ℕ+]. ∀[k:ℕ].  uiff(k ≤ (a ÷ n);(k n) ≤ a)


Proof




Definitions occuring in Statement :  nat_plus: + nat: uiff: uiff(P;Q) uall: [x:A]. B[x] le: A ≤ B divide: n ÷ m multiply: m
Definitions unfolded in proof :  member: t ∈ T uall: [x:A]. B[x] nat: nat_plus: + prop: nequal: a ≠ b ∈  ge: i ≥  not: ¬A implies:  Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False all: x:A. B[x] top: Top and: P ∧ Q subtype_rel: A ⊆B uiff: uiff(P;Q) le: A ≤ B div_nrel: Div(a;n;q) lelt: i ≤ j < k or: P ∨ Q decidable: Dec(P) squash: T true: True guard: {T} iff: ⇐⇒ Q
Lemmas referenced :  less_than'_wf le_wf nat_properties nat_plus_properties full-omega-unsat intformand_wf intformeq_wf itermVar_wf itermConstant_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_wf equal-wf-base int_subtype_base nat_wf nat_plus_wf div_elim uiff_wf nat_plus_subtype_nat mul_preserves_le int_term_value_mul_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma itermMultiply_wf intformle_wf intformnot_wf satisfiable-full-omega-tt decidable__le lt_transitivity_2 less_than_wf squash_wf true_wf mul_com subtype_rel_self iff_weakening_equal int_term_value_add_lemma itermAdd_wf mul_cancel_in_lt
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis multiplyEquality because_Cache divideEquality lambdaFormation natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation applyEquality baseClosed isect_memberFormation productElimination independent_pairEquality axiomEquality equalityTransitivity equalitySymmetry hyp_replacement applyLambdaEquality computeAll unionElimination addEquality imageElimination imageMemberEquality instantiate universeEquality

Latex:
\mforall{}[a:\mBbbN{}].  \mforall{}[n:\mBbbN{}\msupplus{}].  \mforall{}[k:\mBbbN{}].    uiff(k  \mleq{}  (a  \mdiv{}  n);(k  *  n)  \mleq{}  a)



Date html generated: 2019_06_20-PM-01_14_29
Last ObjectModification: 2018_09_17-PM-05_43_52

Theory : int_2


Home Index