Nuprl Lemma : div_lbound_1
∀[a:ℕ]. ∀[n:ℕ+]. ∀[k:ℕ].  uiff(k ≤ (a ÷ n);(k * n) ≤ a)
Proof
Definitions occuring in Statement : 
nat_plus: ℕ+
, 
nat: ℕ
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
divide: n ÷ m
, 
multiply: n * m
Definitions unfolded in proof : 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
, 
nat_plus: ℕ+
, 
prop: ℙ
, 
nequal: a ≠ b ∈ T 
, 
ge: i ≥ j 
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
all: ∀x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
uiff: uiff(P;Q)
, 
le: A ≤ B
, 
div_nrel: Div(a;n;q)
, 
lelt: i ≤ j < k
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
squash: ↓T
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
Lemmas referenced : 
less_than'_wf, 
le_wf, 
nat_properties, 
nat_plus_properties, 
full-omega-unsat, 
intformand_wf, 
intformeq_wf, 
itermVar_wf, 
itermConstant_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
equal-wf-base, 
int_subtype_base, 
nat_wf, 
nat_plus_wf, 
div_elim, 
uiff_wf, 
nat_plus_subtype_nat, 
mul_preserves_le, 
int_term_value_mul_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
itermMultiply_wf, 
intformle_wf, 
intformnot_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
lt_transitivity_2, 
less_than_wf, 
squash_wf, 
true_wf, 
mul_com, 
subtype_rel_self, 
iff_weakening_equal, 
int_term_value_add_lemma, 
itermAdd_wf, 
mul_cancel_in_lt
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
multiplyEquality, 
because_Cache, 
divideEquality, 
lambdaFormation, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
applyEquality, 
baseClosed, 
isect_memberFormation, 
productElimination, 
independent_pairEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
hyp_replacement, 
applyLambdaEquality, 
computeAll, 
unionElimination, 
addEquality, 
imageElimination, 
imageMemberEquality, 
instantiate, 
universeEquality
Latex:
\mforall{}[a:\mBbbN{}].  \mforall{}[n:\mBbbN{}\msupplus{}].  \mforall{}[k:\mBbbN{}].    uiff(k  \mleq{}  (a  \mdiv{}  n);(k  *  n)  \mleq{}  a)
Date html generated:
2019_06_20-PM-01_14_29
Last ObjectModification:
2018_09_17-PM-05_43_52
Theory : int_2
Home
Index