Nuprl Lemma : div_anti_sym2

[a:ℤ]. ∀[b:ℤ-o].  (((-a) ÷ b) (-(a ÷ b)) ∈ ℤ)


Proof




Definitions occuring in Statement :  int_nzero: -o uall: [x:A]. B[x] divide: n ÷ m minus: -n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nequal: a ≠ b ∈  not: ¬A implies:  Q int_nzero: -o all: x:A. B[x] uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a or: P ∨ Q guard: {T} subtract: m subtype_rel: A ⊆B top: Top le: A ≤ B less_than': less_than'(a;b) true: True false: False prop: decidable: Dec(P) nat_plus: + iff: ⇐⇒ Q rev_implies:  Q int_lower: {...i} sq_type: SQType(T) squash: T rev_uimplies: rev_uimplies(P;Q) nat:
Lemmas referenced :  not-equal-2 le_antisymmetry_iff condition-implies-le minus-zero add-zero add-associates minus-add minus-minus minus-one-mul zero-add minus-one-mul-top two-mul add-commutes mul-distributes-right one-mul add_functionality_wrt_le le-add-cancel add-swap add-mul-special equal-wf-T-base decidable__le int_nzero_wf div_2_to_1 decidable__lt false_wf not-lt-2 less_than_wf equal_wf le_reflexive add-inverse le_wf div_3_to_1 not-le-2 subtype_base_sq int_subtype_base squash_wf true_wf div_anti_sym le-add-cancel2 or_wf subtype_rel_self iff_weakening_equal div_4_to_1 add_functionality_wrt_lt le_weakening2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation addEquality hypothesis because_Cache sqequalHypSubstitution setElimination thin rename extract_by_obid dependent_functionElimination hypothesisEquality natural_numberEquality productElimination independent_isectElimination unionElimination isectElimination minusEquality sqequalRule applyEquality lambdaEquality isect_memberEquality voidElimination voidEquality multiplyEquality independent_functionElimination baseClosed axiomEquality intEquality dependent_set_memberEquality independent_pairFormation divideEquality instantiate cumulativity equalityTransitivity equalitySymmetry imageElimination universeEquality inlFormation inrFormation addLevel orFunctionality imageMemberEquality

Latex:
\mforall{}[a:\mBbbZ{}].  \mforall{}[b:\mBbbZ{}\msupminus{}\msupzero{}].    (((-a)  \mdiv{}  b)  =  (-(a  \mdiv{}  b)))



Date html generated: 2019_06_20-AM-11_25_08
Last ObjectModification: 2018_08_18-PM-00_39_45

Theory : arithmetic


Home Index