Nuprl Lemma : div_4_to_1

[a:ℕ]. ∀[b:{...-1}].  ((a ÷ b) (-(a ÷ -b)) ∈ ℤ)


Proof




Definitions occuring in Statement :  int_lower: {...i} nat: uall: [x:A]. B[x] divide: n ÷ m minus: -n natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T int_lower: {...i} nat: uimplies: supposing a all: x:A. B[x] top: Top le: A ≤ B and: P ∧ Q nequal: a ≠ b ∈  uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q not: ¬A rev_implies:  Q implies:  Q false: False subtract: m less_than': less_than'(a;b) true: True int_nzero: -o prop: ge: i ≥  nat_plus: + subtype_rel: A ⊆B exists: x:A. B[x] guard: {T} squash: T sq_type: SQType(T)
Lemmas referenced :  int_lower_properties nat_properties add_functionality_wrt_le subtract_wf le_reflexive int_lower_wf istype-nat istype-void not-equal-2 minus-one-mul-top decidable__le istype-le istype-false not-le-2 condition-implies-le minus-one-mul add-commutes minus-add minus-minus add-swap add-associates zero-add le-add-cancel2 add-mul-special zero-mul add-zero div_unique3 minus-zero le-add-cancel nequal_wf rem-zero div_rem_sum rem_bounds_1 decidable__lt not-lt-2 minus-le le-add-cancel-alt istype-less_than mul-associates mul-commutes mul-swap less_than_transitivity1 less_than_irreflexivity absval_wf int_subtype_base less_than_wf squash_wf true_wf istype-int absval_pos absval_neg decidable__int_equal subtype_base_sq le_weakening nequal-le-implies
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin minusEquality natural_numberEquality hypothesisEquality hypothesis setElimination rename because_Cache independent_isectElimination dependent_functionElimination Error :universeIsType,  sqequalRule Error :isect_memberEquality_alt,  axiomEquality Error :isectIsTypeImplies,  Error :inhabitedIsType,  voidElimination multiplyEquality productElimination addEquality unionElimination Error :inlFormation_alt,  independent_pairFormation Error :lambdaFormation_alt,  Error :inrFormation_alt,  independent_functionElimination Error :dependent_set_memberEquality_alt,  intEquality divideEquality equalityTransitivity equalitySymmetry applyEquality Error :lambdaEquality_alt,  Error :dependent_pairFormation_alt,  remainderEquality Error :productIsType,  Error :equalityIstype,  baseApply closedConclusion baseClosed sqequalBase Error :functionIsType,  hyp_replacement imageElimination imageMemberEquality instantiate cumulativity

Latex:
\mforall{}[a:\mBbbN{}].  \mforall{}[b:\{...-1\}].    ((a  \mdiv{}  b)  =  (-(a  \mdiv{}  -b)))



Date html generated: 2019_06_20-AM-11_25_04
Last ObjectModification: 2019_01_03-PM-04_06_01

Theory : arithmetic


Home Index