Nuprl Lemma : div_unique3

a:ℤ. ∀n:ℤ-o.
  ∀[p:ℤ]
    uiff((a ÷ n) p ∈ ℤ;∃r:ℤ
                          (|r| < |n|
                          ∧ (a ((p n) r) ∈ ℤ)
                          ∧ ((0 ≤ a)  (0 ≤ r))
                          ∧ (0 <  0 < a)
                          ∧ (r <  a < 0)))


Proof




Definitions occuring in Statement :  absval: |i| int_nzero: -o less_than: a < b uiff: uiff(P;Q) uall: [x:A]. B[x] le: A ≤ B all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q divide: n ÷ m multiply: m add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a member: t ∈ T subtype_rel: A ⊆B int_nzero: -o so_lambda: λ2x.t[x] so_apply: x[s] exists: x:A. B[x] nat: implies:  Q nequal: a ≠ b ∈  not: ¬A false: False sq_type: SQType(T) guard: {T} true: True squash: T prop: iff: ⇐⇒ Q rev_implies:  Q top: Top subtract: m decidable: Dec(P) or: P ∨ Q bool: 𝔹 unit: Unit it: btrue: tt less_than: a < b less_than': less_than'(a;b) bfalse: ff bnot: ¬bb ifthenelse: if then else fi  assert: b le: A ≤ B cand: c∧ B ge: i ≥ 
Lemmas referenced :  set_subtype_base nequal_wf int_subtype_base istype-less_than absval_wf istype-le int_nzero_wf istype-int rem_bounds_absval subtype_base_sq equal_wf squash_wf true_wf istype-universe div_rem_sum subtype_rel_self iff_weakening_equal rem-sign istype-void mul-commutes add-commutes mul-distributes-right minus-one-mul mul-associates add-associates add-mul-special zero-mul zero-add minus-one-mul-top add-swap decidable__int_equal nat_wf le_wf absval-non-neg subtract_wf absval_sym minus-add minus-zero minus-minus add-zero absval_unfold2 lt_int_wf eqtt_to_assert assert_of_lt_int istype-top eqff_to_assert bool_cases_sqequal bool_subtype_base iff_transitivity assert_wf bnot_wf not_wf less_than_wf iff_weakening_uiff assert_of_bnot istype-assert bool_wf not-equal-2 add_functionality_wrt_le le-add-cancel not-lt-2 condition-implies-le add_functionality_wrt_lt le_reflexive decidable__lt istype-false less-iff-le one-mul two-mul less_than_transitivity2 le_weakening2 minus-is-int-iff absval_mul mul_preserves_le multiply-is-int-iff le_antisymmetry_iff nat_properties decidable__le not-le-2 le-add-cancel2 less_than_transitivity1 le_weakening less_than_irreflexivity
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  Error :isect_memberFormation_alt,  independent_pairFormation cut introduction axiomEquality hypothesis thin rename Error :equalityIsType4,  Error :inhabitedIsType,  hypothesisEquality sqequalRule baseApply closedConclusion baseClosed applyEquality extract_by_obid sqequalHypSubstitution isectElimination intEquality Error :lambdaEquality_alt,  natural_numberEquality independent_isectElimination Error :productIsType,  setElimination equalityTransitivity equalitySymmetry Error :functionIsType,  because_Cache Error :universeIsType,  Error :dependent_pairFormation_alt,  remainderEquality independent_functionElimination voidElimination dependent_functionElimination promote_hyp instantiate cumulativity imageElimination universeEquality imageMemberEquality productElimination divideEquality Error :isect_memberEquality_alt,  multiplyEquality addEquality minusEquality unionElimination Error :dependent_set_memberEquality_alt,  equalityElimination lessCases axiomSqEquality Error :isectIsTypeImplies,  Error :equalityIsType1,  applyLambdaEquality

Latex:
\mforall{}a:\mBbbZ{}.  \mforall{}n:\mBbbZ{}\msupminus{}\msupzero{}.
    \mforall{}[p:\mBbbZ{}]
        uiff((a  \mdiv{}  n)  =  p;\mexists{}r:\mBbbZ{}
                                            (|r|  <  |n|
                                            \mwedge{}  (a  =  ((p  *  n)  +  r))
                                            \mwedge{}  ((0  \mleq{}  a)  {}\mRightarrow{}  (0  \mleq{}  r))
                                            \mwedge{}  (0  <  r  {}\mRightarrow{}  0  <  a)
                                            \mwedge{}  (r  <  0  {}\mRightarrow{}  a  <  0)))



Date html generated: 2019_06_20-AM-11_24_53
Last ObjectModification: 2018_10_18-PM-03_54_42

Theory : arithmetic


Home Index