Nuprl Lemma : minus-le
∀[n,x:ℤ]. uiff((-n) ≤ x;0 ≤ (x + n))
Proof
Definitions occuring in Statement :
uiff: uiff(P;Q)
,
uall: ∀[x:A]. B[x]
,
le: A ≤ B
,
add: n + m
,
minus: -n
,
natural_number: $n
,
int: ℤ
Definitions unfolded in proof :
uiff: uiff(P;Q)
,
and: P ∧ Q
,
uimplies: b supposing a
,
member: t ∈ T
,
le: A ≤ B
,
not: ¬A
,
implies: P
⇒ Q
,
false: False
,
prop: ℙ
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
subtype_rel: A ⊆r B
,
top: Top
Lemmas referenced :
add-swap,
zero-add,
add-associates,
add_functionality_wrt_le,
zero-mul,
add-mul-special,
minus-one-mul-top,
minus-one-mul,
add-commutes,
int_subtype_base,
add-is-int-iff,
le_reflexive,
less_than'_wf,
le_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
independent_pairFormation,
isect_memberFormation,
introduction,
cut,
sqequalRule,
sqequalHypSubstitution,
productElimination,
thin,
independent_pairEquality,
lambdaEquality,
dependent_functionElimination,
hypothesisEquality,
because_Cache,
axiomEquality,
equalityTransitivity,
hypothesis,
equalitySymmetry,
lemma_by_obid,
isectElimination,
minusEquality,
voidElimination,
natural_numberEquality,
addEquality,
intEquality,
isect_memberEquality,
baseApply,
closedConclusion,
baseClosed,
applyEquality,
independent_isectElimination,
voidEquality
Latex:
\mforall{}[n,x:\mBbbZ{}]. uiff((-n) \mleq{} x;0 \mleq{} (x + n))
Date html generated:
2016_05_13-PM-03_31_35
Last ObjectModification:
2016_01_14-PM-06_41_11
Theory : arithmetic
Home
Index