Nuprl Lemma : div_3_to_1

[a:{...0}]. ∀[b:{...-1}].  ((a ÷ b) ((-a) ÷ -b) ∈ ℤ)


Proof




Definitions occuring in Statement :  int_lower: {...i} uall: [x:A]. B[x] divide: n ÷ m minus: -n natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T int_lower: {...i} uimplies: supposing a all: x:A. B[x] top: Top subtype_rel: A ⊆B subtract: m int_nzero: -o le: A ≤ B and: P ∧ Q nequal: a ≠ b ∈  uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) decidable: Dec(P) or: P ∨ Q prop: iff: ⇐⇒ Q not: ¬A rev_implies:  Q implies:  Q false: False guard: {T} less_than': less_than'(a;b) true: True nat: nat_plus: + exists: x:A. B[x] cand: c∧ B squash: T sq_type: SQType(T) less_than: a < b
Lemmas referenced :  int_lower_properties add_functionality_wrt_le le_reflexive int_lower_wf subtract_wf minus-one-mul-top minus-one-mul zero-add add-mul-special zero-mul add-swap add-associates add-zero div_unique3 not-equal-2 decidable__le le_wf false_wf not-le-2 condition-implies-le add-commutes minus-add minus-zero le-add-cancel or_wf nequal_wf minus-minus le-add-cancel2 rem-zero div_rem_sum rem_bounds_1 decidable__lt not-lt-2 minus-le le-add-cancel-alt less_than_wf absval_wf equal-wf-base squash_wf true_wf absval_sym nat_wf iff_weakening_equal equal_wf absval_pos absval_neg mul_preserves_eq mul-associates one-mul less_than_transitivity1 le_weakening less_than_irreflexivity mul-distributes mul-swap mul-commutes subtype_base_sq int_subtype_base le_antisymmetry add_functionality_wrt_lt decidable__int_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin minusEquality natural_numberEquality hypothesisEquality hypothesis setElimination rename because_Cache independent_isectElimination dependent_functionElimination sqequalRule isect_memberEquality axiomEquality multiplyEquality voidElimination voidEquality applyEquality lambdaEquality intEquality dependent_set_memberEquality productElimination addEquality unionElimination inlFormation independent_pairFormation lambdaFormation inrFormation independent_functionElimination addLevel orFunctionality divideEquality dependent_pairFormation productEquality baseApply closedConclusion baseClosed functionEquality imageElimination equalityTransitivity equalitySymmetry imageMemberEquality universeEquality hyp_replacement remainderEquality instantiate cumulativity

Latex:
\mforall{}[a:\{...0\}].  \mforall{}[b:\{...-1\}].    ((a  \mdiv{}  b)  =  ((-a)  \mdiv{}  -b))



Date html generated: 2017_04_14-AM-07_18_14
Last ObjectModification: 2017_02_27-PM-02_54_16

Theory : arithmetic


Home Index