Nuprl Lemma : div_anti_sym
∀[a:ℤ]. ∀[b:ℤ-o].  ((a ÷ -b) = (-(a ÷ b)) ∈ ℤ)
Proof
Definitions occuring in Statement : 
int_nzero: ℤ-o
, 
uall: ∀[x:A]. B[x]
, 
divide: n ÷ m
, 
minus: -n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nequal: a ≠ b ∈ T 
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
int_nzero: ℤ-o
, 
all: ∀x:A. B[x]
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
or: P ∨ Q
, 
guard: {T}
, 
subtract: n - m
, 
subtype_rel: A ⊆r B
, 
top: Top
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
true: True
, 
false: False
, 
prop: ℙ
, 
decidable: Dec(P)
, 
nat: ℕ
, 
int_lower: {...i}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
sq_type: SQType(T)
, 
nat_plus: ℕ+
Lemmas referenced : 
int_nzero_wf, 
not-equal-2, 
le_antisymmetry_iff, 
condition-implies-le, 
minus-zero, 
add-zero, 
add-associates, 
minus-add, 
minus-minus, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
two-mul, 
add-commutes, 
mul-distributes-right, 
one-mul, 
add_functionality_wrt_le, 
le-add-cancel, 
add-swap, 
add-mul-special, 
equal_wf, 
decidable__le, 
div_4_to_1, 
le_wf, 
false_wf, 
not-le-2, 
le-add-cancel2, 
subtract_wf, 
le_reflexive, 
mul-associates, 
zero-mul, 
subtype_base_sq, 
int_subtype_base, 
div_3_to_1, 
div_2_to_1, 
decidable__lt, 
not-lt-2, 
less_than_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesis, 
lemma_by_obid, 
sqequalRule, 
sqequalHypSubstitution, 
isect_memberEquality, 
isectElimination, 
thin, 
hypothesisEquality, 
axiomEquality, 
because_Cache, 
intEquality, 
lambdaFormation, 
addEquality, 
setElimination, 
rename, 
dependent_functionElimination, 
natural_numberEquality, 
productElimination, 
independent_isectElimination, 
unionElimination, 
minusEquality, 
applyEquality, 
lambdaEquality, 
voidElimination, 
voidEquality, 
multiplyEquality, 
independent_functionElimination, 
dependent_set_memberEquality, 
divideEquality, 
independent_pairFormation, 
instantiate, 
cumulativity, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[a:\mBbbZ{}].  \mforall{}[b:\mBbbZ{}\msupminus{}\msupzero{}].    ((a  \mdiv{}  -b)  =  (-(a  \mdiv{}  b)))
Date html generated:
2016_05_13-PM-03_36_14
Last ObjectModification:
2015_12_26-AM-09_44_01
Theory : arithmetic
Home
Index