Nuprl Lemma : div_anti_sym

[a:ℤ]. ∀[b:ℤ-o].  ((a ÷ -b) (-(a ÷ b)) ∈ ℤ)


Proof




Definitions occuring in Statement :  int_nzero: -o uall: [x:A]. B[x] divide: n ÷ m minus: -n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nequal: a ≠ b ∈  not: ¬A implies:  Q int_nzero: -o all: x:A. B[x] uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a or: P ∨ Q guard: {T} subtract: m subtype_rel: A ⊆B top: Top le: A ≤ B less_than': less_than'(a;b) true: True false: False prop: decidable: Dec(P) nat: int_lower: {...i} iff: ⇐⇒ Q rev_implies:  Q sq_type: SQType(T) nat_plus: +
Lemmas referenced :  int_nzero_wf not-equal-2 le_antisymmetry_iff condition-implies-le minus-zero add-zero add-associates minus-add minus-minus minus-one-mul zero-add minus-one-mul-top two-mul add-commutes mul-distributes-right one-mul add_functionality_wrt_le le-add-cancel add-swap add-mul-special equal_wf decidable__le div_4_to_1 le_wf false_wf not-le-2 le-add-cancel2 subtract_wf le_reflexive mul-associates zero-mul subtype_base_sq int_subtype_base div_3_to_1 div_2_to_1 decidable__lt not-lt-2 less_than_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis lemma_by_obid sqequalRule sqequalHypSubstitution isect_memberEquality isectElimination thin hypothesisEquality axiomEquality because_Cache intEquality lambdaFormation addEquality setElimination rename dependent_functionElimination natural_numberEquality productElimination independent_isectElimination unionElimination minusEquality applyEquality lambdaEquality voidElimination voidEquality multiplyEquality independent_functionElimination dependent_set_memberEquality divideEquality independent_pairFormation instantiate cumulativity equalityTransitivity equalitySymmetry

Latex:
\mforall{}[a:\mBbbZ{}].  \mforall{}[b:\mBbbZ{}\msupminus{}\msupzero{}].    ((a  \mdiv{}  -b)  =  (-(a  \mdiv{}  b)))



Date html generated: 2016_05_13-PM-03_36_14
Last ObjectModification: 2015_12_26-AM-09_44_01

Theory : arithmetic


Home Index