Nuprl Lemma : div_bounds_3

[a:{...0}]. ∀[n:{...-1}].  (0 ≤ (a ÷ n))


Proof




Definitions occuring in Statement :  int_lower: {...i} uall: [x:A]. B[x] le: A ≤ B divide: n ÷ m minus: -n natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T int_lower: {...i} le: A ≤ B and: P ∧ Q nequal: a ≠ b ∈  all: x:A. B[x] uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) uimplies: supposing a decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q not: ¬A rev_implies:  Q implies:  Q false: False subtract: m top: Top less_than': less_than'(a;b) true: True int_nzero: -o prop: nat: subtype_rel: A ⊆B cand: c∧ B sq_type: SQType(T) guard: {T} gt: i > j
Lemmas referenced :  int_lower_properties not-equal-2 decidable__le istype-le istype-false not-le-2 istype-void condition-implies-le add-associates add-commutes add-swap zero-add minus-add minus-zero add_functionality_wrt_le le-add-cancel le_witness_for_triv int_lower_wf div_rem_sum nequal_wf rem_bounds_3 mul_preserves_le add-zero minus-minus minus-one-mul minus-one-mul-top subtract_wf le_reflexive add-is-int-iff int_subtype_base mul-distributes-right add-mul-special mul_preserves_eq mul-distributes mul-commutes mul-associates one-mul subtype_base_sq zero-mul add_functionality_wrt_lt multiply-is-int-iff less_than_transitivity1 less_than_irreflexivity
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin minusEquality natural_numberEquality hypothesisEquality hypothesis setElimination rename remainderEquality because_Cache productElimination dependent_functionElimination independent_isectElimination addEquality unionElimination Error :inlFormation_alt,  independent_pairFormation Error :lambdaFormation_alt,  voidElimination Error :inrFormation_alt,  sqequalRule Error :isect_memberEquality_alt,  independent_functionElimination divideEquality equalityTransitivity equalitySymmetry Error :universeIsType,  Error :isectIsTypeImplies,  Error :inhabitedIsType,  Error :dependent_set_memberEquality_alt,  intEquality baseClosed baseApply closedConclusion applyEquality multiplyEquality instantiate cumulativity

Latex:
\mforall{}[a:\{...0\}].  \mforall{}[n:\{...-1\}].    (0  \mleq{}  (a  \mdiv{}  n))



Date html generated: 2019_06_20-AM-11_24_43
Last ObjectModification: 2019_01_02-AM-11_31_17

Theory : arithmetic


Home Index