Step
*
of Lemma
rem_gen_base_case
∀[a:ℤ]. ∀[n:ℤ-o]. (a rem n) = a ∈ ℤ supposing |a| < |n|
BY
{ Assert ⌜∀a:ℤ. ∀n:ℕ+. (|a| < |n|
⇒ ((a rem n) = a ∈ ℤ))⌝ }
1
.....assertion.....
∀a:ℤ. ∀n:ℕ+. (|a| < |n|
⇒ ((a rem n) = a ∈ ℤ))
2
1. ∀a:ℤ. ∀n:ℕ+. (|a| < |n|
⇒ ((a rem n) = a ∈ ℤ))
⊢ ∀[a:ℤ]. ∀[n:ℤ-o]. (a rem n) = a ∈ ℤ supposing |a| < |n|
Latex:
Latex:
\mforall{}[a:\mBbbZ{}]. \mforall{}[n:\mBbbZ{}\msupminus{}\msupzero{}]. (a rem n) = a supposing |a| < |n|
By
Latex:
Assert \mkleeneopen{}\mforall{}a:\mBbbZ{}. \mforall{}n:\mBbbN{}\msupplus{}. (|a| < |n| {}\mRightarrow{} ((a rem n) = a))\mkleeneclose{}
Home
Index