Step
*
2
2
of Lemma
sum-has-value
1. n : Base
2. f : Base
3. (sum_aux(n;0;0;x.f[x]))↓
4. n ∈ ℤ
5. ∀d,n,m:ℕ.  (((n - m) ≤ d) 
⇒ (∀v:ℤ. ((sum_aux(n;v;m;x.f[x]))↓ 
⇒ (f ∈ {m..n-} ⟶ ℤ))))
⊢ f ∈ ℕn ⟶ ℤ
BY
{ TACTIC:((ExtWith [`i'] [⌜Void ⟶ Void⌝]⋅ THEN Auto) THEN InstHyp [⌜n⌝;⌜n⌝;⌜0⌝;⌜0⌝] 5⋅ THEN Auto) }
Latex:
Latex:
1.  n  :  Base
2.  f  :  Base
3.  (sum\_aux(n;0;0;x.f[x]))\mdownarrow{}
4.  n  \mmember{}  \mBbbZ{}
5.  \mforall{}d,n,m:\mBbbN{}.    (((n  -  m)  \mleq{}  d)  {}\mRightarrow{}  (\mforall{}v:\mBbbZ{}.  ((sum\_aux(n;v;m;x.f[x]))\mdownarrow{}  {}\mRightarrow{}  (f  \mmember{}  \{m..n\msupminus{}\}  {}\mrightarrow{}  \mBbbZ{}))))
\mvdash{}  f  \mmember{}  \mBbbN{}n  {}\mrightarrow{}  \mBbbZ{}
By
Latex:
TACTIC:((ExtWith  [`i']  [\mkleeneopen{}Void  {}\mrightarrow{}  Void\mkleeneclose{}]\mcdot{}  THEN  Auto)  THEN  InstHyp  [\mkleeneopen{}n\mkleeneclose{};\mkleeneopen{}n\mkleeneclose{};\mkleeneopen{}0\mkleeneclose{};\mkleeneopen{}0\mkleeneclose{}]  5\mcdot{}  THEN  Auto)
Home
Index