Step
*
1
of Lemma
sum_aux_wf
.....assertion.....
∀d:ℕ. ∀[v,i:ℤ]. ∀[f:{i..i + d-} ⟶ ℤ]. (sum_aux(i + d;v;i;x.f[x]) ∈ ℤ)
BY
{ (InductionOnNat THEN Auto THEN RecUnfold `sum_aux` 0 THEN AutoSplit) }
1
1. d : ℤ
2. 0 < d
3. ∀[v,i:ℤ]. ∀[f:{i..i + (d - 1)-} ⟶ ℤ]. (sum_aux(i + (d - 1);v;i;x.f[x]) ∈ ℤ)
4. v : ℤ
5. i : ℤ
6. f : {i..i + d-} ⟶ ℤ
7. i < i + d
⊢ eval v' = f[i] + v in
eval i' = i + 1 in
sum_aux(i + d;v';i';x.f[x]) ∈ ℤ
Latex:
Latex:
.....assertion.....
\mforall{}d:\mBbbN{}. \mforall{}[v,i:\mBbbZ{}]. \mforall{}[f:\{i..i + d\msupminus{}\} {}\mrightarrow{} \mBbbZ{}]. (sum\_aux(i + d;v;i;x.f[x]) \mmember{} \mBbbZ{})
By
Latex:
(InductionOnNat THEN Auto THEN RecUnfold `sum\_aux` 0 THEN AutoSplit)
Home
Index