Nuprl Lemma : sum_aux_wf

[v,i,k:ℤ]. ∀[f:{i..k-} ⟶ ℤ].  sum_aux(k;v;i;x.f[x]) ∈ ℤ supposing i ≤ k


Proof




Definitions occuring in Statement :  sum_aux: sum_aux(k;v;i;x.f[x]) int_seg: {i..j-} uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] le: A ≤ B member: t ∈ T function: x:A ⟶ B[x] int:
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: sum_aux: sum_aux(k;v;i;x.f[x]) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) less_than: a < b less_than': less_than'(a;b) true: True squash: T bfalse: ff or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb ifthenelse: if then else fi  assert: b decidable: Dec(P) has-value: (a)↓ so_apply: x[s] int_seg: {i..j-} lelt: i ≤ j < k so_lambda: λ2x.t[x]
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf int_seg_wf lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int top_wf itermAdd_wf int_term_value_add_lemma eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma nat_wf value-type-has-value int-value-type lelt_wf int_subtype_base decidable__equal_int intformeq_wf int_formula_prop_eq_lemma decidable__lt le_wf
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination axiomEquality equalityTransitivity equalitySymmetry functionEquality addEquality isect_memberFormation unionElimination equalityElimination productElimination lessCases sqequalAxiom because_Cache imageMemberEquality baseClosed imageElimination promote_hyp instantiate cumulativity callbyvalueReduce applyEquality functionExtensionality dependent_set_memberEquality

Latex:
\mforall{}[v,i,k:\mBbbZ{}].  \mforall{}[f:\{i..k\msupminus{}\}  {}\mrightarrow{}  \mBbbZ{}].    sum\_aux(k;v;i;x.f[x])  \mmember{}  \mBbbZ{}  supposing  i  \mleq{}  k



Date html generated: 2017_04_14-AM-09_19_31
Last ObjectModification: 2017_02_27-PM-03_56_17

Theory : int_2


Home Index