Step
*
1
1
of Lemma
sum_difference
1. n : ℕ
2. f : ℕn ⟶ ℤ
3. g : ℕn ⟶ ℤ
4. d : ℤ
5. Σ(f[x] - g[x] | x < n) = d ∈ ℤ
⊢ Σ(f[x] | x < n) = Σ(g[x] + (f[x] - g[x]) | x < n) ∈ ℤ
BY
{ (BackThruLemma `sum_functionality` THEN Auto) }
Latex:
Latex:
1.  n  :  \mBbbN{}
2.  f  :  \mBbbN{}n  {}\mrightarrow{}  \mBbbZ{}
3.  g  :  \mBbbN{}n  {}\mrightarrow{}  \mBbbZ{}
4.  d  :  \mBbbZ{}
5.  \mSigma{}(f[x]  -  g[x]  |  x  <  n)  =  d
\mvdash{}  \mSigma{}(f[x]  |  x  <  n)  =  \mSigma{}(g[x]  +  (f[x]  -  g[x])  |  x  <  n)
By
Latex:
(BackThruLemma  `sum\_functionality`  THEN  Auto)
Home
Index