Nuprl Lemma : sum_difference
∀[n:ℕ]. ∀[f,g:ℕn ⟶ ℤ]. ∀[d:ℤ].  Σ(f[x] | x < n) = (Σ(g[x] | x < n) + d) ∈ ℤ supposing Σ(f[x] - g[x] | x < n) = d ∈ ℤ
Proof
Definitions occuring in Statement : 
sum: Σ(f[x] | x < k)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
function: x:A ⟶ B[x]
, 
subtract: n - m
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
sq_type: SQType(T)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
nat: ℕ
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
squash: ↓T
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
int_seg: {i..j-}
, 
ge: i ≥ j 
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
Lemmas referenced : 
subtype_base_sq, 
int_subtype_base, 
equal-wf-T-base, 
sum_wf, 
subtract_wf, 
int_seg_wf, 
nat_wf, 
equal_wf, 
squash_wf, 
true_wf, 
sum_linear, 
subtype_rel_self, 
iff_weakening_equal, 
sum_functionality, 
int_seg_properties, 
nat_properties, 
decidable__equal_int, 
lelt_wf, 
full-omega-unsat, 
intformnot_wf, 
intformeq_wf, 
itermVar_wf, 
itermAdd_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_term_value_subtract_lemma, 
int_formula_prop_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
thin, 
instantiate, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
cumulativity, 
intEquality, 
independent_isectElimination, 
hypothesis, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
hypothesisEquality, 
independent_functionElimination, 
Error :universeIsType, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
natural_numberEquality, 
setElimination, 
rename, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
Error :inhabitedIsType, 
functionEquality, 
Error :functionIsType, 
imageElimination, 
universeEquality, 
imageMemberEquality, 
baseClosed, 
productElimination, 
addEquality, 
lambdaFormation, 
unionElimination, 
dependent_set_memberEquality, 
independent_pairFormation, 
approximateComputation, 
dependent_pairFormation, 
int_eqEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[f,g:\mBbbN{}n  {}\mrightarrow{}  \mBbbZ{}].  \mforall{}[d:\mBbbZ{}].
    \mSigma{}(f[x]  |  x  <  n)  =  (\mSigma{}(g[x]  |  x  <  n)  +  d)  supposing  \mSigma{}(f[x]  -  g[x]  |  x  <  n)  =  d
Date html generated:
2019_06_20-PM-01_18_08
Last ObjectModification:
2018_09_26-PM-02_37_38
Theory : int_2
Home
Index