Nuprl Lemma : sum_difference

[n:ℕ]. ∀[f,g:ℕn ⟶ ℤ]. ∀[d:ℤ].  Σ(f[x] x < n) (g[x] x < n) d) ∈ ℤ supposing Σ(f[x] g[x] x < n) d ∈ ℤ


Proof




Definitions occuring in Statement :  sum: Σ(f[x] x < k) int_seg: {i..j-} nat: uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] subtract: m add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a sq_type: SQType(T) all: x:A. B[x] implies:  Q guard: {T} so_lambda: λ2x.t[x] so_apply: x[s] nat: subtype_rel: A ⊆B prop: squash: T true: True iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q int_seg: {i..j-} ge: i ≥  lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top
Lemmas referenced :  subtype_base_sq int_subtype_base equal-wf-T-base sum_wf subtract_wf int_seg_wf nat_wf equal_wf squash_wf true_wf sum_linear subtype_rel_self iff_weakening_equal sum_functionality int_seg_properties nat_properties decidable__equal_int lelt_wf full-omega-unsat intformnot_wf intformeq_wf itermVar_wf itermAdd_wf itermSubtract_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_add_lemma int_term_value_subtract_lemma int_formula_prop_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut thin instantiate extract_by_obid sqequalHypSubstitution isectElimination cumulativity intEquality independent_isectElimination hypothesis dependent_functionElimination equalityTransitivity equalitySymmetry hypothesisEquality independent_functionElimination Error :universeIsType,  sqequalRule lambdaEquality applyEquality natural_numberEquality setElimination rename isect_memberEquality axiomEquality because_Cache Error :inhabitedIsType,  functionEquality Error :functionIsType,  imageElimination universeEquality imageMemberEquality baseClosed productElimination addEquality lambdaFormation unionElimination dependent_set_memberEquality independent_pairFormation approximateComputation dependent_pairFormation int_eqEquality voidElimination voidEquality

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[f,g:\mBbbN{}n  {}\mrightarrow{}  \mBbbZ{}].  \mforall{}[d:\mBbbZ{}].
    \mSigma{}(f[x]  |  x  <  n)  =  (\mSigma{}(g[x]  |  x  <  n)  +  d)  supposing  \mSigma{}(f[x]  -  g[x]  |  x  <  n)  =  d



Date html generated: 2019_06_20-PM-01_18_08
Last ObjectModification: 2018_09_26-PM-02_37_38

Theory : int_2


Home Index