Step
*
of Lemma
polyconst_wf
∀[n:ℕ]. ∀[k:ℤ]. (polyconst(n;k) ∈ polyform(n))
BY
{ (InductionOnNat
THEN RecUnfold `polyconst` 0
THEN RecUnfold `polyform` 0
THEN Reduce 0
THEN (D 0 THENA Auto)
THEN Try (Trivial)
THEN RepeatFor 2 ((MemCD THEN Try (Complete (Auto))))) }
1
.....subterm..... T:t
4:n
1. n : ℤ
2. 0 < n
3. ∀[k:ℤ]. (polyconst(n - 1;k) ∈ polyform(n - 1))
4. k : ℤ
5. ¬(n = 0 ∈ ℤ)
6. ¬(k = 0 ∈ ℤ)
⊢ eval m = n - 1 in
eval c = polyconst(m;k) in
[c] ∈ if (n =z 0) then ℤ else polyform(n - 1) List fi
Latex:
Latex:
\mforall{}[n:\mBbbN{}]. \mforall{}[k:\mBbbZ{}]. (polyconst(n;k) \mmember{} polyform(n))
By
Latex:
(InductionOnNat
THEN RecUnfold `polyconst` 0
THEN RecUnfold `polyform` 0
THEN Reduce 0
THEN (D 0 THENA Auto)
THEN Try (Trivial)
THEN RepeatFor 2 ((MemCD THEN Try (Complete (Auto)))))
Home
Index