Nuprl Lemma : polyconst_wf
∀[n:ℕ]. ∀[k:ℤ].  (polyconst(n;k) ∈ polyform(n))
Proof
Definitions occuring in Statement : 
polyconst: polyconst(n;k), 
polyform: polyform(n), 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
nat: ℕ, 
implies: P ⇒ Q, 
false: False, 
ge: i ≥ j , 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
not: ¬A, 
all: ∀x:A. B[x], 
top: Top, 
and: P ∧ Q, 
prop: ℙ, 
polyconst: polyconst(n;k), 
polyform: polyform(n), 
eq_int: (i =z j), 
subtract: n - m, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
decidable: Dec(P), 
or: P ∨ Q, 
subtype_rel: A ⊆r B, 
guard: {T}, 
has-value: (a)↓, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
uiff: uiff(P;Q), 
bfalse: ff, 
sq_type: SQType(T), 
bnot: ¬bb, 
assert: ↑b, 
nequal: a ≠ b ∈ T 
Lemmas referenced : 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
decidable__le, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
less_than_transitivity1, 
le_weakening, 
less_than_irreflexivity, 
nat_wf, 
value-type-has-value, 
int-value-type, 
polyform_wf, 
le_wf, 
polyform-value-type, 
cons_wf, 
nil_wf, 
subtype_rel-equal, 
list_wf, 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
sqequalRule, 
intWeakElimination, 
lambdaFormation, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
independent_functionElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
unionElimination, 
because_Cache, 
applyEquality, 
callbyvalueReduce, 
dependent_set_memberEquality, 
equalityElimination, 
productElimination, 
promote_hyp, 
instantiate, 
cumulativity
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[k:\mBbbZ{}].    (polyconst(n;k)  \mmember{}  polyform(n))
Date html generated:
2017_09_29-PM-06_00_22
Last ObjectModification:
2017_04_26-PM-02_04_55
Theory : integer!polynomials
Home
Index