Step
*
1
of Lemma
co-cons_one_one
1. T : Type
2. a : T
3. a' : T
4. b : colist(T)
5. b' : colist(T)
6. [a / b] = [a' / b'] ∈ colist(T)
⊢ a = a' ∈ T
BY
{ (StrengthenEquation (-1) THEN ApFunToHypEquands `Z' ⌜hd(Z)⌝⌜T⌝ (-1)⋅) }
1
.....fun wf..... 
1. T : Type
2. a : T
3. a' : T
4. b : colist(T)
5. b' : colist(T)
6. [a / b] = [a' / b'] ∈ colist(T)
7. [a / b] = [a' / b'] ∈ {z:colist(T)| (z = [a / b] ∈ colist(T)) ∧ (z = [a' / b'] ∈ colist(T))} 
8. Z : {z:colist(T)| (z = [a / b] ∈ colist(T)) ∧ (z = [a' / b'] ∈ colist(T))} 
⊢ hd(Z) = hd(Z) ∈ T
2
1. T : Type
2. a : T
3. a' : T
4. b : colist(T)
5. b' : colist(T)
6. [a / b] = [a' / b'] ∈ colist(T)
7. [a / b] = [a' / b'] ∈ {z:colist(T)| (z = [a / b] ∈ colist(T)) ∧ (z = [a' / b'] ∈ colist(T))} 
8. hd([a / b]) = hd([a' / b']) ∈ T
⊢ a = a' ∈ T
Latex:
Latex:
1.  T  :  Type
2.  a  :  T
3.  a'  :  T
4.  b  :  colist(T)
5.  b'  :  colist(T)
6.  [a  /  b]  =  [a'  /  b']
\mvdash{}  a  =  a'
By
Latex:
(StrengthenEquation  (-1)  THEN  ApFunToHypEquands  `Z'  \mkleeneopen{}hd(Z)\mkleeneclose{}\mkleeneopen{}T\mkleeneclose{}  (-1)\mcdot{})
Home
Index