Nuprl Lemma : co-cons_one_one
∀[T:Type]. ∀[a,a':T]. ∀[b,b':colist(T)]. uiff([a / b] = [a' / b'] ∈ colist(T);{(a = a' ∈ T) ∧ (b = b' ∈ colist(T))})
Proof
Definitions occuring in Statement :
co-cons: [x / L]
,
colist: colist(T)
,
uiff: uiff(P;Q)
,
uall: ∀[x:A]. B[x]
,
guard: {T}
,
and: P ∧ Q
,
universe: Type
,
equal: s = t ∈ T
Definitions unfolded in proof :
guard: {T}
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
uimplies: b supposing a
,
squash: ↓T
,
true: True
,
ext-eq: A ≡ B
,
subtype_rel: A ⊆r B
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
nil: []
,
bfalse: ff
,
cons: [a / b]
,
top: Top
,
co-nil: ()
,
false: False
,
co-cons: [x / L]
,
hd: hd(l)
,
pi1: fst(t)
Lemmas referenced :
co-cons_wf,
colist-ext,
isaxiom_wf_listunion,
colist_wf,
subtype_rel_b-union-left,
unit_wf2,
axiom-listunion,
subtype_rel_b-union-right,
non-axiom-listunion,
reduce_hd_cons_lemma,
istype-void,
co-cons-not-co-nil,
reduce_tl_nil_lemma,
reduce_tl_cons_lemma
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
Error :isect_memberFormation_alt,
introduction,
cut,
independent_pairFormation,
hypothesis,
sqequalHypSubstitution,
productElimination,
thin,
independent_pairEquality,
axiomEquality,
Error :equalityIstype,
Error :inhabitedIsType,
hypothesisEquality,
extract_by_obid,
isectElimination,
applyEquality,
Error :lambdaEquality_alt,
imageElimination,
because_Cache,
equalitySymmetry,
natural_numberEquality,
imageMemberEquality,
baseClosed,
Error :productIsType,
Error :isect_memberEquality_alt,
Error :isectIsTypeImplies,
Error :dependent_set_memberEquality_alt,
equalityTransitivity,
applyLambdaEquality,
setElimination,
rename,
promote_hyp,
hypothesis_subsumption,
Error :lambdaFormation_alt,
unionElimination,
equalityElimination,
productEquality,
independent_isectElimination,
dependent_functionElimination,
voidElimination,
independent_functionElimination
Latex:
\mforall{}[T:Type]. \mforall{}[a,a':T]. \mforall{}[b,b':colist(T)]. uiff([a / b] = [a' / b'];\{(a = a') \mwedge{} (b = b')\})
Date html generated:
2019_06_20-PM-00_41_56
Last ObjectModification:
2019_01_02-PM-05_25_05
Theory : list_0
Home
Index