Nuprl Lemma : co-cons_one_one

[T:Type]. ∀[a,a':T]. ∀[b,b':colist(T)].  uiff([a b] [a' b'] ∈ colist(T);{(a a' ∈ T) ∧ (b b' ∈ colist(T))})


Proof




Definitions occuring in Statement :  co-cons: [x L] colist: colist(T) uiff: uiff(P;Q) uall: [x:A]. B[x] guard: {T} and: P ∧ Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  guard: {T} uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a squash: T true: True ext-eq: A ≡ B subtype_rel: A ⊆B all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt nil: [] bfalse: ff cons: [a b] top: Top co-nil: () false: False co-cons: [x L] hd: hd(l) pi1: fst(t)
Lemmas referenced :  co-cons_wf colist-ext isaxiom_wf_listunion colist_wf subtype_rel_b-union-left unit_wf2 axiom-listunion subtype_rel_b-union-right non-axiom-listunion reduce_hd_cons_lemma istype-void co-cons-not-co-nil reduce_tl_nil_lemma reduce_tl_cons_lemma
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep Error :isect_memberFormation_alt,  introduction cut independent_pairFormation hypothesis sqequalHypSubstitution productElimination thin independent_pairEquality axiomEquality Error :equalityIstype,  Error :inhabitedIsType,  hypothesisEquality extract_by_obid isectElimination applyEquality Error :lambdaEquality_alt,  imageElimination because_Cache equalitySymmetry natural_numberEquality imageMemberEquality baseClosed Error :productIsType,  Error :isect_memberEquality_alt,  Error :isectIsTypeImplies,  Error :dependent_set_memberEquality_alt,  equalityTransitivity applyLambdaEquality setElimination rename promote_hyp hypothesis_subsumption Error :lambdaFormation_alt,  unionElimination equalityElimination productEquality independent_isectElimination dependent_functionElimination voidElimination independent_functionElimination

Latex:
\mforall{}[T:Type].  \mforall{}[a,a':T].  \mforall{}[b,b':colist(T)].    uiff([a  /  b]  =  [a'  /  b'];\{(a  =  a')  \mwedge{}  (b  =  b')\})



Date html generated: 2019_06_20-PM-00_41_56
Last ObjectModification: 2019_01_02-PM-05_25_05

Theory : list_0


Home Index