Nuprl Lemma : co-cons_one_one
∀[T:Type]. ∀[a,a':T]. ∀[b,b':colist(T)].  uiff([a / b] = [a' / b'] ∈ colist(T);{(a = a' ∈ T) ∧ (b = b' ∈ colist(T))})
Proof
Definitions occuring in Statement : 
co-cons: [x / L]
, 
colist: colist(T)
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
guard: {T}
, 
and: P ∧ Q
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
guard: {T}
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
squash: ↓T
, 
true: True
, 
ext-eq: A ≡ B
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
nil: []
, 
bfalse: ff
, 
cons: [a / b]
, 
top: Top
, 
co-nil: ()
, 
false: False
, 
co-cons: [x / L]
, 
hd: hd(l)
, 
pi1: fst(t)
Lemmas referenced : 
co-cons_wf, 
colist-ext, 
isaxiom_wf_listunion, 
colist_wf, 
subtype_rel_b-union-left, 
unit_wf2, 
axiom-listunion, 
subtype_rel_b-union-right, 
non-axiom-listunion, 
reduce_hd_cons_lemma, 
istype-void, 
co-cons-not-co-nil, 
reduce_tl_nil_lemma, 
reduce_tl_cons_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
independent_pairFormation, 
hypothesis, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairEquality, 
axiomEquality, 
Error :equalityIstype, 
Error :inhabitedIsType, 
hypothesisEquality, 
extract_by_obid, 
isectElimination, 
applyEquality, 
Error :lambdaEquality_alt, 
imageElimination, 
because_Cache, 
equalitySymmetry, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
Error :productIsType, 
Error :isect_memberEquality_alt, 
Error :isectIsTypeImplies, 
Error :dependent_set_memberEquality_alt, 
equalityTransitivity, 
applyLambdaEquality, 
setElimination, 
rename, 
promote_hyp, 
hypothesis_subsumption, 
Error :lambdaFormation_alt, 
unionElimination, 
equalityElimination, 
productEquality, 
independent_isectElimination, 
dependent_functionElimination, 
voidElimination, 
independent_functionElimination
Latex:
\mforall{}[T:Type].  \mforall{}[a,a':T].  \mforall{}[b,b':colist(T)].    uiff([a  /  b]  =  [a'  /  b'];\{(a  =  a')  \mwedge{}  (b  =  b')\})
Date html generated:
2019_06_20-PM-00_41_56
Last ObjectModification:
2019_01_02-PM-05_25_05
Theory : list_0
Home
Index