Nuprl Lemma : co-cons_wf
∀[T:Type]. ∀[x:T]. ∀[L:colist(T)].  ([x / L] ∈ colist(T))
Proof
Definitions occuring in Statement : 
co-cons: [x / L]
, 
colist: colist(T)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
co-cons: [x / L]
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
colist_wf, 
istype-universe, 
product_subtype_colist
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
independent_pairEquality, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
sqequalHypSubstitution, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :universeIsType, 
extract_by_obid, 
isectElimination, 
thin, 
Error :isect_memberEquality_alt, 
Error :isectIsTypeImplies, 
Error :inhabitedIsType, 
instantiate, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[x:T].  \mforall{}[L:colist(T)].    ([x  /  L]  \mmember{}  colist(T))
Date html generated:
2019_06_20-PM-00_38_12
Last ObjectModification:
2018_12_04-PM-00_20_06
Theory : list_0
Home
Index