Nuprl Lemma : non-axiom-listunion
∀[A,B:Type]. ∀[L:Unit ⋃ (A × B)].  L ∈ A × B supposing isaxiom(L) = ff
Proof
Definitions occuring in Statement : 
b-union: A ⋃ B, 
bfalse: ff, 
btrue: tt, 
bool: 𝔹, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
isaxiom: if z = Ax then a otherwise b, 
unit: Unit, 
member: t ∈ T, 
product: x:A × B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
uimplies: b supposing a, 
member: t ∈ T, 
b-union: A ⋃ B, 
tunion: ⋃x:A.B[x], 
bool: 𝔹, 
unit: Unit, 
ifthenelse: if b then t else f fi , 
pi2: snd(t), 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
prop: ℙ
Lemmas referenced : 
btrue_neq_bfalse, 
equal_wf, 
bool_wf, 
isaxiom_wf_listunion, 
bfalse_wf, 
b-union_wf, 
unit_wf2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
sqequalHypSubstitution, 
imageElimination, 
productElimination, 
thin, 
unionElimination, 
equalityElimination, 
sqequalRule, 
hypothesis, 
lemma_by_obid, 
independent_functionElimination, 
voidElimination, 
independent_pairEquality, 
hypothesisEquality, 
isectElimination, 
productEquality, 
universeEquality
Latex:
\mforall{}[A,B:Type].  \mforall{}[L:Unit  \mcup{}  (A  \mtimes{}  B)].    L  \mmember{}  A  \mtimes{}  B  supposing  isaxiom(L)  =  ff
Date html generated:
2016_05_14-AM-06_25_12
Last ObjectModification:
2015_12_26-PM-00_42_39
Theory : list_0
Home
Index