Step
*
of Lemma
colength-positive2
∀[T:Type]. ∀[L:T List].
∀n:ℕ
(0 < n
⇒ (colength(L) = n ∈ ℤ)
⇒ {(fst(L) ∈ T) ∧ (snd(L) ∈ T List) ∧ (colength(L) = (1 + colength(snd(L))) ∈ ℤ) ∧ (L ~ [fst(L) / (snd(L))])})
BY
{ (InstLemma `colength-positive` [] THEN RepeatFor 2 (ParallelLast') THEN Auto THEN D 3 THEN Auto) }
Latex:
Latex:
\mforall{}[T:Type]. \mforall{}[L:T List].
\mforall{}n:\mBbbN{}
(0 < n
{}\mRightarrow{} (colength(L) = n)
{}\mRightarrow{} \{(fst(L) \mmember{} T)
\mwedge{} (snd(L) \mmember{} T List)
\mwedge{} (colength(L) = (1 + colength(snd(L))))
\mwedge{} (L \msim{} [fst(L) / (snd(L))])\})
By
Latex:
(InstLemma `colength-positive` [] THEN RepeatFor 2 (ParallelLast') THEN Auto THEN D 3 THEN Auto)
Home
Index