Nuprl Lemma : colength-positive2

[T:Type]. ∀[L:T List].
  ∀n:ℕ
    (0 < n
     (colength(L) n ∈ ℤ)
     {(fst(L) ∈ T) ∧ (snd(L) ∈ List) ∧ (colength(L) (1 colength(snd(L))) ∈ ℤ) ∧ (L [fst(L) (snd(L))])})


Proof




Definitions occuring in Statement :  cons: [a b] list: List colength: colength(L) nat: less_than: a < b uall: [x:A]. B[x] guard: {T} pi1: fst(t) pi2: snd(t) all: x:A. B[x] implies:  Q and: P ∧ Q member: t ∈ T add: m natural_number: $n int: universe: Type sqequal: t equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] implies:  Q guard: {T} nat: subtype_rel: A ⊆B uimplies: supposing a and: P ∧ Q prop:
Lemmas referenced :  colength-positive less_than_transitivity1 colength_wf_list le_weakening equal_wf nat_wf less_than_wf list_wf
Rules used in proof :  cut lemma_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaFormation introduction independent_functionElimination equalitySymmetry natural_numberEquality setElimination rename applyEquality because_Cache sqequalRule independent_isectElimination dependent_functionElimination productElimination independent_pairEquality axiomEquality equalityTransitivity sqequalAxiom intEquality lambdaEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].
    \mforall{}n:\mBbbN{}
        (0  <  n
        {}\mRightarrow{}  (colength(L)  =  n)
        {}\mRightarrow{}  \{(fst(L)  \mmember{}  T)
              \mwedge{}  (snd(L)  \mmember{}  T  List)
              \mwedge{}  (colength(L)  =  (1  +  colength(snd(L))))
              \mwedge{}  (L  \msim{}  [fst(L)  /  (snd(L))])\})



Date html generated: 2016_05_14-AM-06_26_17
Last ObjectModification: 2015_12_26-PM-00_42_03

Theory : list_0


Home Index