Step
*
2
of Lemma
insert-int-1-1
1. T : Type
2. T ⊆r ℤ
3. u : T
4. v : T List
5. ∀[bs:T List]
(∀[x:T]. v = bs ∈ (T List) supposing insert-int(x;v) = insert-int(x;bs) ∈ (T List)) supposing
(sorted(bs) and
sorted(v))
6. sorted([u / v])
7. sorted([])
8. x : T
9. insert-int(x;[u / v]) = insert-int(x;[]) ∈ (T List)
⊢ [u / v] = [] ∈ (T List)
BY
{ ((ApFunToHypEquands `Z' ⌜||Z||⌝ ⌜ℤ⌝ (-1)⋅ THENA Auto)
THEN (RWO "length-insert-int" (-1) THENA Auto)
THEN Reduce (-1)
THEN Auto') }
Latex:
Latex:
1. T : Type
2. T \msubseteq{}r \mBbbZ{}
3. u : T
4. v : T List
5. \mforall{}[bs:T List]
(\mforall{}[x:T]. v = bs supposing insert-int(x;v) = insert-int(x;bs)) supposing
(sorted(bs) and
sorted(v))
6. sorted([u / v])
7. sorted([])
8. x : T
9. insert-int(x;[u / v]) = insert-int(x;[])
\mvdash{} [u / v] = []
By
Latex:
((ApFunToHypEquands `Z' \mkleeneopen{}||Z||\mkleeneclose{} \mkleeneopen{}\mBbbZ{}\mkleeneclose{} (-1)\mcdot{} THENA Auto)
THEN (RWO "length-insert-int" (-1) THENA Auto)
THEN Reduce (-1)
THEN Auto')
Home
Index