Nuprl Lemma : insert-int-1-1
∀[T:Type]
  ∀[as,bs:T List].
    (∀[x:T]. as = bs ∈ (T List) supposing insert-int(x;as) = insert-int(x;bs) ∈ (T List)) supposing 
       (sorted(bs) and 
       sorted(as)) 
  supposing T ⊆r ℤ
Proof
Definitions occuring in Statement : 
sorted: sorted(L)
, 
insert-int: insert-int(x;l)
, 
list: T List
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
int: ℤ
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
nat: ℕ
, 
iff: P 
⇐⇒ Q
, 
squash: ↓T
, 
sq_type: SQType(T)
, 
false: False
, 
less_than': less_than'(a;b)
, 
not: ¬A
, 
le: A ≤ B
, 
subtract: n - m
, 
guard: {T}
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
ge: i ≥ j 
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
true: True
, 
label: ...$L... t
, 
or: P ∨ Q
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
rev_implies: P 
⇐ Q
, 
bfalse: ff
Lemmas referenced : 
list_induction, 
uall_wf, 
list_wf, 
isect_wf, 
sorted_wf, 
equal_wf, 
insert-int_wf, 
nil_wf, 
equal-wf-base-T, 
cons_wf, 
subtype_rel_wf, 
nat_properties, 
iff_weakening_equal, 
length-insert-int, 
true_wf, 
squash_wf, 
int_subtype_base, 
subtype_base_sq, 
one-mul, 
zero-add, 
zero-mul, 
mul-distributes-right, 
two-mul, 
add-mul-special, 
subtract_wf, 
le-add-cancel2, 
add-zero, 
add_functionality_wrt_le, 
add-commutes, 
add-associates, 
minus-one-mul-top, 
add-swap, 
minus-one-mul, 
minus-add, 
condition-implies-le, 
le_antisymmetry_iff, 
base_wf, 
subtype_rel-equal, 
nat_wf, 
length_wf_nat, 
non_neg_length, 
length_of_cons_lemma, 
length_of_nil_lemma, 
length_wf, 
subtype_rel_list, 
lt_int_wf, 
cons_one_one, 
assert_wf, 
bnot_wf, 
not_wf, 
less_than_wf, 
less_than_transitivity1, 
le_weakening, 
less_than_irreflexivity, 
insert-int-cons, 
bool_cases, 
bool_wf, 
bool_subtype_base, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bnot, 
sorted-cons
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
cumulativity, 
hypothesis, 
because_Cache, 
independent_isectElimination, 
independent_functionElimination, 
voidEquality, 
voidElimination, 
baseClosed, 
isect_memberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
lambdaFormation, 
rename, 
dependent_functionElimination, 
intEquality, 
universeEquality, 
setElimination, 
imageMemberEquality, 
imageElimination, 
instantiate, 
multiplyEquality, 
promote_hyp, 
minusEquality, 
productElimination, 
addEquality, 
applyEquality, 
sqequalIntensionalEquality, 
dependent_pairFormation, 
natural_numberEquality, 
applyLambdaEquality, 
unionElimination, 
independent_pairFormation, 
impliesFunctionality
Latex:
\mforall{}[T:Type]
    \mforall{}[as,bs:T  List].
        (\mforall{}[x:T].  as  =  bs  supposing  insert-int(x;as)  =  insert-int(x;bs))  supposing 
              (sorted(bs)  and 
              sorted(as)) 
    supposing  T  \msubseteq{}r  \mBbbZ{}
Date html generated:
2017_09_29-PM-05_50_06
Last ObjectModification:
2017_07_26-PM-01_39_03
Theory : list_0
Home
Index